Counting holomorphic cylinders via non-archimedean geometry

Tony Yue YU

Paris VII

Barcelona Mathematical Days 2014

This talk is about enumerative geometry

(1) Counting curves (Kontsevich's recursive formula)
(2) Counting discs (Wall-crossing formula)
(3) Tools from non-archimedean geometry and tropical geometry
(4) Counting cylinders in log Calabi-Yau surfaces

Counting curves

Q: How many lines pass through 2 given points on a plane?

Counting curves

Q: How many lines pass through 2 given points on a plane?

Counting curves

Q: How many lines pass through 2 given points on a plane?

Q: How many conics pass through 5 generic points on a plane?

Counting curves

Q: How many lines pass through 2 given points on a plane?

Q: How many conics pass through 5 generic points on a plane?

Counting curves

Q: How many lines pass through 2 given points on a plane?

Q: How many conics pass through 5 generic points on a plane?

Q: How to generalize and obtain more interesting numbers?

Q: How to generalize and obtain more interesting numbers?

Q: How to generalize and obtain more interesting numbers?
Let us be more precise. Where? What? How?

Q: How to generalize and obtain more interesting numbers?
Let us be more precise. Where? What? How?

Explanations:

- Target space X : complex algebraic variety
- Curve C: closed Riemann surface

Q: How to generalize and obtain more interesting numbers?
Let us be more precise. Where? What? How?

Explanations:

- Target space X : complex algebraic variety
- Curve C: closed Riemann surface

Example: $X=\mathbb{C} P^{2}$

Let's consider an example $X=\mathbb{C} P^{2}$. Let $\overline{\mathcal{M}}_{0,0}:=\left\{\right.$ rational curves in $\mathbb{C} P^{2}$ of degree $\left.d\right\}$.

Example: $X=\mathbb{C} P^{2}$

Let's consider an example $X=\mathbb{C} P^{2}$.
Let $\overline{\mathcal{M}}_{0,0}:=\left\{\right.$ rational curves in $\mathbb{C} P^{2}$ of degree $\left.d\right\}$.
Lemma

$$
\operatorname{dim}_{\mathbb{C}} \overline{\mathcal{M}}_{0,0}\left(\mathbb{C} P^{2}, d\right)=3 d-1
$$

Example: $X=\mathbb{C} P^{2}$

Let's consider an example $X=\mathbb{C} P^{2}$.
Let $\overline{\mathcal{M}}_{0,0}:=\left\{\right.$ rational curves in $\mathbb{C} P^{2}$ of degree $\left.d\right\}$.

Lemma

$$
\operatorname{dim}_{\mathbb{C}} \overline{\mathcal{M}}_{0,0}\left(\mathbb{C} P^{2}, d\right)=3 d-1
$$

Proof.

$$
\begin{aligned}
f: \mathbb{C} P^{1} & \longrightarrow \mathbb{C} P^{2} \\
(u, v) & \longmapsto(P(u, v), Q(u, v), R(u, v))
\end{aligned}
$$

where P, Q, R are homogeneous polynomials of degree d.
Now it is easy to count the dimension.

Example: $X=\mathbb{C} P^{2}$

Let's consider an example $X=\mathbb{C} P^{2}$.
Let $\overline{\mathcal{M}}_{0,0}:=\left\{\right.$ rational curves in $\mathbb{C} P^{2}$ of degree $\left.d\right\}$.

Lemma

$$
\operatorname{dim}_{\mathbb{C}} \overline{\mathcal{M}}_{0,0}\left(\mathbb{C} P^{2}, d\right)=3 d-1
$$

Q: There are too many rational curves in $\mathbb{C} P^{2}$ of degree d. How to get a finite number?

Example: $X=\mathbb{C} P^{2}$

Let's consider an example $X=\mathbb{C} P^{2}$.
Let $\overline{\mathcal{M}}_{0,0}:=\left\{\right.$ rational curves in $\mathbb{C} P^{2}$ of degree $\left.d\right\}$.

Lemma

$$
\operatorname{dim}_{\mathbb{C}} \overline{\mathcal{M}}_{0,0}\left(\mathbb{C} P^{2}, d\right)=3 d-1
$$

Q: There are too many rational curves in $\mathbb{C} P^{2}$ of degree d. How to get a finite number?

A: It suffices to fix $3 d-1$ generic points in $\mathbb{C} P^{2}$ and ask our curves to pass through these points.

Kontsevich's recursive formula

Q: There are too many rational curves in $\mathbb{C} P^{2}$ of degree d. How to get a finite number?

A: It suffices to fix $3 d-1$ generic points in $\mathbb{C} P^{2}$ and ask our curves to pass through these points.

Kontsevich's recursive formula

Q: There are too many rational curves in $\mathbb{C} P^{2}$ of degree d. How to get a finite number?

A: It suffices to fix $3 d-1$ generic points in $\mathbb{C} P^{2}$ and ask our curves to pass through these points.

Let N_{d} denote the number of degree d rational curves in $\mathbb{C} P^{2}$ passing through $3 d-1$ generic points.

We have $N_{1}=1, N_{2}=1, N_{3}=12, N_{4}=620\left(\right.$ Zeuthen 1874), $N_{5}=$?, $N_{6}=$?,\ldots

The answer for $d \geq 5$ was unknown until the 90 s.

Let N_{d} denote the number of degree d rational curves in $\mathbb{C} P^{2}$ passing through $3 d-1$ generic points.

We have $N_{1}=1, N_{2}=1, N_{3}=12, N_{4}=620$ (Zeuthen 1874), $N_{5}=$?, $N_{6}=$?,..

The answer for $d \geq 5$ was unknown until the 90 s.

Let N_{d} denote the number of degree d rational curves in $\mathbb{C} P^{2}$ passing through 3d-1 generic points.

We have $N_{1}=1, N_{2}=1, N_{3}=12, N_{4}=620$ (Zeuthen 1874), $N_{5}=$?, $N_{6}=$?, ...

The answer for $d \geq 5$ was unknown until the 90 s.

Theorem (Kontsevich-Manin 94, Ruan-Tian 94)

The numbers N_{d} satisfy the following recursive formula

$$
N_{d}=\sum_{\substack{d_{1}, d_{2}>0 \\ d_{1}+d_{2}=d}}\binom{3 d-4}{3 d_{1}-2}\left(d_{1} d_{2}\right)^{2} N_{d_{1}} N_{d_{2}}-\sum_{\substack{d_{1}, d_{2}>0 \\ d_{1}+d_{2}=d}}\binom{3 d-4}{3 d_{2}-1} d_{1} d_{2}^{3} N_{d_{1}} N_{d_{2}}
$$

Now we can compute $d_{5}=87304, d_{6}=26312976, d_{7}=14616808192$, $d_{8}=13525751027392, d_{9}=19385778269260800, \ldots$

Gromov-Witten invariants

Theorem (Kontsevich-Manin 94, Ruan-Tian 94)

The numbers N_{d} satisfy the following recursive formula

$$
N_{d}=\sum_{\substack{d_{1}, d_{2}>0 \\ d_{1}+d_{2}=d}}\binom{3 d-4}{3 d_{1}-2}\left(d_{1} d_{2}\right)^{2} N_{d_{1}} N_{d_{2}}-\sum_{\substack{d_{1}, d_{2}>0 \\ d_{1}+d_{2}=d}}\binom{3 d-4}{3 d_{2}-1} d_{1} d_{2}^{3} N_{d_{1}} N_{d_{2}}
$$

Gromov-Witten invariants

Theorem (Kontsevich-Manin 94, Ruan-Tian 94)

The numbers N_{d} satisfy the following recursive formula

$$
N_{d}=\sum_{\substack{d_{1}, d_{2}>0 \\ d_{1}+d_{2}=d}}\binom{3 d-4}{3 d_{1}-2}\left(d_{1} d_{2}\right)^{2} N_{d_{1}} N_{d_{2}}-\sum_{\substack{d_{1}, d_{2}>0 \\ d_{1}+d_{2}=d}}\binom{3 d-4}{3 d_{2}-1} d_{1} d_{2}^{3} N_{d_{1}} N_{d_{2}}
$$

Remark

- The numbers N_{d} are examples of Gromov-Witten invariants.
- The recurrence relation above is a particular case of WDVV equations for Gromov-Witten invariants.

Counting discs

Inspired by string theory and mirror symmetry, one tries to count not only "closed curves" in a target space X

but also "open curves" (i.e. Riemann surfaces with boundaries)

A lot more possibilities!
In order to obtain a finite number of them, we need not only fix some marked points, but also impose boundary conditions. Let me explain through an example.

Let $X=Y \backslash D$, where Y is a complex projective surface, $D=D_{1}+\cdots+D_{l} \in\left|-K_{Y}\right|$ is an anti-canonical cycle of rational curves.

Example

Let $X=Y \backslash D$, where Y is a complex projective surface, $D=D_{1}+\cdots+D_{l} \in\left|-K_{Y}\right|$ is an anti-canonical cycle of rational curves.

Example

Let $X=Y \backslash D$, where Y is a complex projective surface, $D=D_{1}+\cdots+D_{l} \in\left|-K_{Y}\right|$ is an anti-canonical cycle of rational curves.

We have a projection $\tau: X \rightarrow \mathbb{R}^{2}$, such that the fibers outside the origin are real 2-dimensional tori.

For a point $z \in \mathbb{R}^{2} \backslash O$, a class $\gamma \in H_{1}\left(\tau^{-1}(z), \mathbb{Z}\right)$, let $\Omega_{z}(\gamma)$ be the number of holomorphic discs whose boundary sits in the fiber $\tau^{-1}(z)$ and represents the class γ.

Q: What properties do the numbers $\Omega_{z}(\gamma)$ have?

For a point $z \in \mathbb{R}^{2} \backslash O$, a class $\gamma \in H_{1}\left(\tau^{-1}(z), \mathbb{Z}\right)$, let $\Omega_{z}(\gamma)$ be the number of holomorphic discs whose boundary sits in the fiber $\tau^{-1}(z)$ and represents the class γ.

Q: What properties do the numbers $\Omega_{z}(\gamma)$ have?

A: Let γ_{z} be the primitive vector in the direction $\overrightarrow{z O}$. We define a generating series $a_{z}(t)=\sum_{k \geq 1} k \Omega_{z}\left(k \gamma_{z}\right) t^{k}$, and an automorphism of $\mathbb{C} \llbracket u_{1}, u_{2} \rrbracket$ given by $T_{z}: \mathbf{u}^{\beta} \mapsto a_{z}\left(\mathbf{u}^{\gamma_{z}}\right)^{\left\langle\beta, \gamma_{z}\right\rangle} \cdot \mathbf{u}^{\beta}, \beta \in \mathbb{Z}$.
Theorem (A reformulation of Gross-Pandharipande-Siebert 09)

$$
\forall \log
$$

in $\mathbb{R}^{2} \backslash 0$, whet hae

For a point $z \in \mathbb{R}^{2} \backslash O$, a class $\gamma \in H_{1}\left(\tau^{-1}(z), \mathbb{Z}\right)$, let $\Omega_{z}(\gamma)$ be the number of holomorphic discs whose boundary sits in the fiber $\tau^{-1}(z)$ and represents the class γ.

Theorem (A reformulation of Gross-Pandharipande-Siebert 09)

Remark

- This is a particular case of the Kontsevich-Soibelman wall-crossing formula for Donaldson-Thomas invariants.
- Like the recursive formula for the numbers N_{d}, the wall-crossing formula permits us to compute all the numbers $\Omega_{z}(\gamma)$ starting from simple initial data.

Non-archimedean geometry and tropical geometry

Q: How to define counting "open curves" and study their properties?

Non-archimedean geometry and tropical geometry

Q: How to define counting "open curves" and study their properties? A: We use/develop tools from non-archimedean geometry and tropical geometry.
Remark: Algebraic geometry no longer applies here because Riemann surfaces with boundaries are not algebraic varieties.

Non-archimedean geometry and tropical geometry

Q: How to define counting "open curves" and study their properties?
A: We use/develop tools from non-archimedean geometry and tropical geometry.
Remark: Algebraic geometry no longer applies here because Riemann surfaces with boundaries are not algebraic varieties.

The projection $\tau: X \rightarrow \mathbb{R}^{2}$ just now is a particular case of the retractions of a non-archimedean analytic space X to its skeleton.

Q: What is non-archimedean here in the story?

Deformation retraction

Q: What is non-archimedean here in the story?

Deformation retraction

Q: What is non-archimedean here in the story?
A: A family of complex algebraic varieties X_{t} parametrized by a punctured disc gives rise naturally to an analytic space X defined over the non-archimedean field $k=\mathbb{C}((t))$. (Think of X as the total space of the family.)

Theorem (Berkovich 99)

Given a nice formal model of X, one can construct a strong deformation retraction from X to a polyhedral complex S.

Example of K3 surface

Theorem (Berkovich 99)

Given a nice formal model of X, one can construct a strong deformation retraction from X to a polyhedral complex S.
X : K3 surface of type III degeneration
The skeleton S is a polyhedral complex homeomorphic to S^{2}.

First steps in enumerative non-archimedean geometry

Q: How to do enumerative geometry in non-archimedean analytic spaces?

First steps in enumerative non-archimedean geometry

Q: How to do enumerative geometry in non-archimedean analytic spaces?
A: Here are the first steps I developed in the last few years:

Theorem (Y, arXiv:1304.2251)

Under the retraction τ, any holomorphic curve C in X becomes a piecewise linear graph $C^{\text {trop }}$ in S which satisfies the generalized balancing conditions.

We call $C^{\text {trop }}$ the tropical curve associated to C.

The balancing conditions are constraints on the shape of $C^{\text {trop }}$ around every vertex.
They are determined by the intersection theory on the formal model.

Tropicalization of families of curves

In the theorem above, we considered the tropicalization of a single holomorphic curve.
Q: What about families of curves?
A: Fix a real number A, set-theoretically we have
$\overline{\mathcal{M}}_{g, n}(X, A):=\{n$-pointed genus g stable maps into X with area $\leq A\}$

$$
\downarrow^{\tau_{\mathcal{M}}}
$$

$$
\mathcal{M}(S, A):=\{\text { tropical curves in } S \text { with area } \leq A\}
$$

Theorem (Y, arXiv:1401.6452)

$\overline{\mathcal{M}}_{g, n}(X, A)$ is a proper k-analytic stack if X is proper.

Theorem (Y, arXiv:1407.8444)

$\mathcal{M}(S, A)$ is a finite compact polyhedral complex. The map $\tau_{\mathcal{M}}$ is continuous. Its image is compact and polyhedral.

The general scheme of enumeration

Theorem (Y, arXiv:1401.6452)

$\overline{\mathcal{M}}_{g, n}(X, A)$ is a proper k-analytic stack if X is proper.

Theorem (Y, arXiv:1407.8444)

$\mathcal{M}(S, A)$ is a finite compact polyhedral complex. The $\operatorname{map} \tau_{\mathcal{M}}$ is continuous. Its image is compact and polyhedral.

Given these preparations, now the enumeration goes as follows:

The general scheme of enumeration

Theorem (Y, arXiv:1401.6452)

$\overline{\mathcal{M}}_{g, n}(X, A)$ is a proper k-analytic stack if X is proper.

Theorem (Y, arXiv:1407.8444)

$\mathcal{M}(S, A)$ is a finite compact polyhedral complex. The $\operatorname{map} \tau_{\mathcal{M}}$ is continuous. Its image is compact and polyhedral.

Given these preparations, now the enumeration goes as follows:
(1) Put enough constraints such that all tropical curves in question become rigid.
(2) Let Z be a rigid tropical curve. Using the theorems on the previous page, one proves that $\tau_{\mathcal{M}}^{-1}(\{Z\})$ is a proper k-analytic stack.
(3) Construct a virtual fundamental class on $\tau_{\mathcal{M}}^{-1}(\{Z\})$, and obtain the number $N(Z)$ of holomorphic curves which tropicalizes to Z.
(9) Sum of $N(Z)$ over all possible tropical curves Z.

Counting cylinders in log Calabi-Yau surfaces

Let's consider again the situation $X=Y \backslash D$, constant family over $\mathbb{C}((t))$, where Y is a projective surface, and $D=D_{1}+\cdots+D_{I} \in\left|-K_{Y}\right|$ is an anti-canonical cycle of rational curves.
We counted discs inside X ten minutes ago, now let's count cylinders.

Lemma

In this case the skeleton S is a homeomorphic to \mathbb{R}^{2}. The retraction $\operatorname{map} \tau: X \rightarrow S$ is a k-analytic torus fibration outside $O \in S$.

Goal: Define a virtual number of holomorphic cylinders $N(L, \beta)$ given a class $\beta \in \operatorname{NE}(Y)$ and a broken path L in $S \backslash O$.

Goal: Define a virtual number of holomorphic cylinders $N(L, \beta)$ given a class $\beta \in \operatorname{NE}(Y)$ and a broken path L in $S \backslash O$.

Step 1: broken path $L \rightsquigarrow$ tropical cylinder \rightsquigarrow extended tropical cylinder

Step 2: By toric blowup, we produce two divisors $\widetilde{D}_{1}, \widetilde{D}_{2} \subset \widetilde{Y}$ corresponding to the two unbounded edges.
Step 3: Let $\mathcal{M}(\widetilde{Y}, L, \beta)$ denote the corresponding moduli stack of holomorphic curves. We prove that it is a proper k-analytic stack. (Rigidity of the tropical cylinder + the theory of formal models of k-analytic stable maps developed in arXiv:1401.6452)
Step 4: Virtual fundamental class \rightsquigarrow virtual number $N(L, \beta)$.

Example (focus-focus singularity)

Example: $Y: \mathbb{P}^{1} \times \mathbb{P}^{1}$ blowup a smooth point in the toric boundary:

We obtain that the corresponding virtual number of cylinders equals $\binom{m}{k}$.

It gives exactly the wall-crossing formula around a focus-focus singularity:

$$
(x, y) \longmapsto(x(1+y), y)
$$

In particular, $x^{m} y^{n} \longmapsto x^{m}(1+y)^{m} y^{n}=\sum_{k=0}^{m}\binom{m}{k} x^{m} y^{k+n}$.

