Counting holomorphic cylinders via non-archimedean geometry

Tony Yue YU

Paris VII

Barcelona Mathematical Days 2014

Tony Yue YU (Paris VII)

Counting holomorphic cylinders

BMD 2014 1 / 23

Counting curves (Kontsevich's recursive formula)

2 Counting discs (Wall-crossing formula)

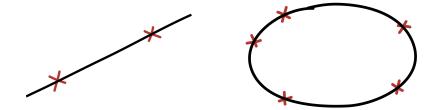
Tools from non-archimedean geometry and tropical geometry

4 Counting cylinders in log Calabi-Yau surfaces

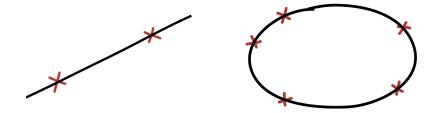
∃ >

Q: How many conics pass through 5 generic points on a plane?

Q: How many conics pass through 5 generic points on a plane?



Q: How many conics pass through 5 generic points on a plane?

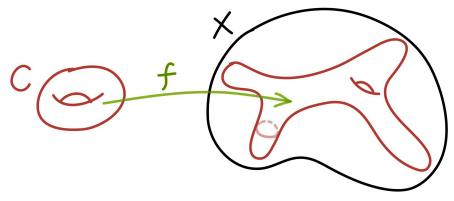


Q: How to generalize and obtain more interesting numbers?

Q: How to generalize and obtain more interesting numbers?

Image: Image:

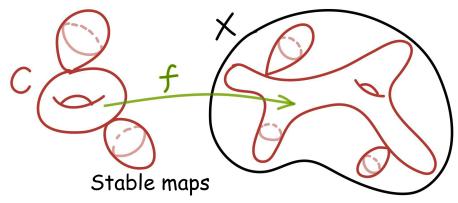
Q: How to generalize and obtain more interesting numbers? Let us be more precise. *Where? What? How?* **Q:** How to generalize and obtain more interesting numbers? Let us be more precise. *Where? What? How?*



Explanations:

- Target space X: complex algebraic variety
- Curve C: closed Riemann surface

Q: How to generalize and obtain more interesting numbers? Let us be more precise. *Where? What? How?*



Explanations:

- Target space X: complex algebraic variety
- Curve C: closed Riemann surface

Let's consider an example $X = \mathbb{C}P^2$. Let $\overline{\mathcal{M}}_{0,0} := \{ \text{ rational curves in } \mathbb{C}P^2 \text{ of degree } d \}$.

• 3 > 1

Let's consider an example $X = \mathbb{C}P^2$. Let $\overline{\mathcal{M}}_{0,0} := \{ \text{ rational curves in } \mathbb{C}P^2 \text{ of degree } d \}$.

Lemma

$$\dim_{\mathbb{C}}\overline{\mathcal{M}}_{0,0}(\mathbb{C}P^2,d)=3d-1.$$

→ Ξ →

Let's consider an example $X = \mathbb{C}P^2$. Let $\overline{\mathcal{M}}_{0,0} := \{ \text{ rational curves in } \mathbb{C}P^2 \text{ of degree } d \}$.

Lemma

$$\dim_{\mathbb{C}}\overline{\mathcal{M}}_{0,0}(\mathbb{C}P^2,d)=3d-1.$$

Proof.

$$f: \mathbb{C}P^1 \longrightarrow \mathbb{C}P^2$$

(u, v) $\longmapsto (P(u, v), Q(u, v), R(u, v))$

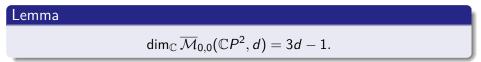
where P, Q, R are homogeneous polynomials of degree d. Now it is easy to count the dimension.

Tony Yue YU (Paris VII)

▲ ■ ▶ ■ つへの BMD 2014 5 / 23

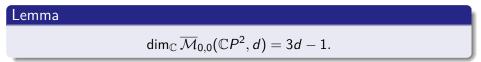
・ロト ・四ト ・ヨト ・ヨト

Let's consider an example $X = \mathbb{C}P^2$. Let $\overline{\mathcal{M}}_{0,0} := \{ \text{ rational curves in } \mathbb{C}P^2 \text{ of degree } d \}$.



Q: There are too many rational curves in $\mathbb{C}P^2$ of degree *d*. How to get a finite number?

Let's consider an example $X = \mathbb{C}P^2$. Let $\overline{\mathcal{M}}_{0,0} := \{ \text{ rational curves in } \mathbb{C}P^2 \text{ of degree } d \}$.



Q: There are too many rational curves in $\mathbb{C}P^2$ of degree *d*. How to get a finite number?

A: It suffices to fix 3d - 1 generic points in $\mathbb{C}P^2$ and ask our curves to pass through these points.

Q: There are too many rational curves in $\mathbb{C}P^2$ of degree *d*. How to get a finite number?

A: It suffices to fix 3d - 1 generic points in $\mathbb{C}P^2$ and ask our curves to pass through these points.

Q: There are too many rational curves in $\mathbb{C}P^2$ of degree *d*. How to get a finite number?

A: It suffices to fix 3d - 1 generic points in $\mathbb{C}P^2$ and ask our curves to pass through these points.

Let N_d denote the number of degree d rational curves in $\mathbb{C}P^2$ passing through 3d - 1 generic points.

We have $N_1 = 1$, $N_2 = 1$, $N_3 = 12$, $N_4 = 620$ (Zeuthen 1874), $N_5 =$?, $N_6 =$?,...

The answer for $d \ge 5$ was unknown until the 90s.

Let N_d denote the number of degree d rational curves in $\mathbb{C}P^2$ passing through 3d - 1 generic points.

We have $N_1 = 1$, $N_2 = 1$, $N_3 = 12$, $N_4 = 620$ (Zeuthen 1874), $N_5 =$?, $N_6 =$?,...

The answer for $d \ge 5$ was unknown until the 90s.

Let N_d denote the number of degree d rational curves in $\mathbb{C}P^2$ passing through 3d - 1 generic points.

We have $N_1 = 1$, $N_2 = 1$, $N_3 = 12$, $N_4 = 620$ (Zeuthen 1874), $N_5 =$?, $N_6 =$?,...

The answer for $d \ge 5$ was unknown until the 90s.

Theorem (Kontsevich-Manin 94, Ruan-Tian 94)

The numbers N_d satisfy the following recursive formula

$$N_{d} = \sum_{\substack{d_{1},d_{2}>0\\d_{1}+d_{2}=d}} \binom{3d-4}{3d_{1}-2} (d_{1}d_{2})^{2} N_{d_{1}}N_{d_{2}} - \sum_{\substack{d_{1},d_{2}>0\\d_{1}+d_{2}=d}} \binom{3d-4}{3d_{2}-1} d_{1}d_{2}^{3} N_{d_{1}}N_{d_{2}}.$$

Now we can compute $d_5 = 87304$, $d_6 = 26312976$, $d_7 = 14616808192$, $d_8 = 13525751027392$, $d_9 = 19385778269260800$,...

Theorem (Kontsevich-Manin 94, Ruan-Tian 94)

The numbers N_d satisfy the following recursive formula

$$N_{d} = \sum_{\substack{d_{1},d_{2}>0\\d_{1}+d_{2}=d}} \binom{3d-4}{3d_{1}-2} (d_{1}d_{2})^{2} N_{d_{1}}N_{d_{2}} - \sum_{\substack{d_{1},d_{2}>0\\d_{1}+d_{2}=d}} \binom{3d-4}{3d_{2}-1} d_{1}d_{2}^{3}N_{d_{1}}N_{d_{2}}.$$

Theorem (Kontsevich-Manin 94, Ruan-Tian 94)

The numbers N_d satisfy the following recursive formula

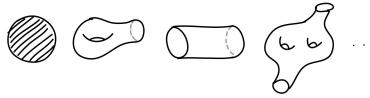
$$N_{d} = \sum_{\substack{d_{1},d_{2}>0\\d_{1}+d_{2}=d}} \binom{3d-4}{3d_{1}-2} (d_{1}d_{2})^{2} N_{d_{1}}N_{d_{2}} - \sum_{\substack{d_{1},d_{2}>0\\d_{1}+d_{2}=d}} \binom{3d-4}{3d_{2}-1} d_{1}d_{2}^{3}N_{d_{1}}N_{d_{2}}.$$

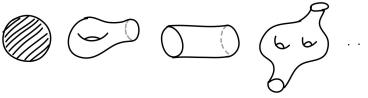
Remark

- The numbers N_d are examples of Gromov-Witten invariants.
- The recurrence relation above is a particular case of WDVV equations for Gromov-Witten invariants.

Inspired by string theory and mirror symmetry, one tries to count not only "closed curves" in a target space X

but also "open curves" (i.e. Riemann surfaces with boundaries)





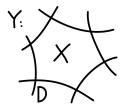
A lot more possibilities!

In order to obtain a finite number of them, we need not only fix some marked points, but also impose boundary conditions. Let me explain through an example.

Let $X = Y \setminus D$, where Y is a complex projective surface, $D = D_1 + \cdots + D_l \in |-K_Y|$ is an anti-canonical cycle of rational curves.

Example

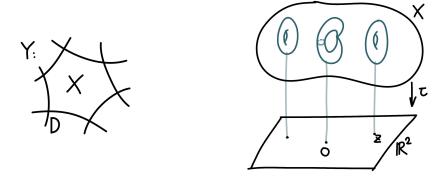
Let $X = Y \setminus D$, where Y is a complex projective surface, $D = D_1 + \cdots + D_l \in |-K_Y|$ is an anti-canonical cycle of rational curves.



• = • •

Example

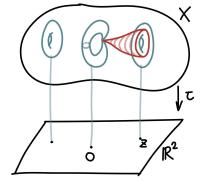
Let $X = Y \setminus D$, where Y is a complex projective surface, $D = D_1 + \cdots + D_l \in |-K_Y|$ is an anti-canonical cycle of rational curves.



We have a projection $\tau: X \to \mathbb{R}^2$, such that the fibers outside the origin are real 2-dimensional tori.

For a point $z \in \mathbb{R}^2 \setminus O$, a class $\gamma \in H_1(\tau^{-1}(z), \mathbb{Z})$, let $\Omega_z(\gamma)$ be the number of holomorphic discs whose boundary sits in the fiber $\tau^{-1}(z)$ and represents the class γ .

Q: What properties do the numbers $\Omega_z(\gamma)$ have?



For a point $z \in \mathbb{R}^2 \setminus O$, a class $\gamma \in H_1(\tau^{-1}(z), \mathbb{Z})$, let $\Omega_z(\gamma)$ be the number of holomorphic discs whose boundary sits in the fiber $\tau^{-1}(z)$ and represents the class γ .

Q: What properties do the numbers $\Omega_z(\gamma)$ have?

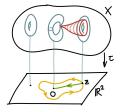
1

A: Let γ_z be the primitive vector in the direction \overrightarrow{zO} . We define a generating series $a_z(t) = \sum_{k\geq 1} k\Omega_z(k\gamma_z)t^k$, and an automorphism of $\mathbb{C}\llbracket u_1, u_2 \rrbracket$ given by $T_z : \mathbf{u}^\beta \mapsto a_z(\mathbf{u}^{\gamma_z})^{\langle \beta, \gamma_z \rangle} \cdot \mathbf{u}^\beta, \beta \in \mathbb{Z}$.

Theorem (A reformulation of Gross-Pandharipande-Siebert 09)

/ loop
$$\int o$$
 in $\mathbb{R}^2 \setminus O$, we have $\prod T_z = id$

For a point $z \in \mathbb{R}^2 \setminus O$, a class $\gamma \in H_1(\tau^{-1}(z), \mathbb{Z})$, let $\Omega_z(\gamma)$ be the number of holomorphic discs whose boundary sits in the fiber $\tau^{-1}(z)$ and represents the class γ .



Theorem (A reformulation of Gross-Pandharipande-Siebert 09)

$$\forall coop \quad for \ R^2 \setminus 0, \text{ we have } \prod T_z = id$$

Remark

- This is a particular case of the Kontsevich-Soibelman wall-crossing formula for Donaldson-Thomas invariants.
- Like the recursive formula for the numbers N_d , the wall-crossing formula permits us to compute all the numbers $\Omega_z(\gamma)$ starting from simple initial data.

Tony Yue YU (Paris VII)

Non-archimedean geometry and tropical geometry

Q: How to define counting "open curves" and study their properties?

Non-archimedean geometry and tropical geometry

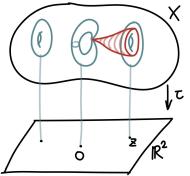
Q: How to define counting "open curves" and study their properties? **A:** We use/develop tools from non-archimedean geometry and tropical geometry.

Remark: Algebraic geometry no longer applies here because Riemann surfaces with boundaries are not algebraic varieties.

Non-archimedean geometry and tropical geometry

Q: How to define counting "open curves" and study their properties? **A:** We use/develop tools from non-archimedean geometry and tropical geometry.

Remark: Algebraic geometry no longer applies here because Riemann surfaces with boundaries are not algebraic varieties.



The projection $\tau: X \to \mathbb{R}^2$ just now is a particular case of the retractions of a non-archimedean analytic space X to its skeleton.

Q: What is non-archimedean here in the story?

Deformation retraction

Q: What is non-archimedean here in the story?

∃ >

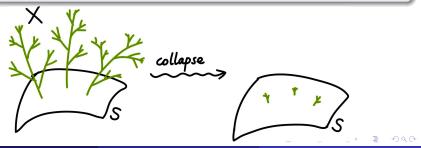
Deformation retraction

Q: What is non-archimedean here in the story?

A: A family of complex algebraic varieties X_t parametrized by a punctured disc gives rise naturally to an analytic space X defined over the non-archimedean field $k = \mathbb{C}((t))$. (Think of X as the total space of the family.)

Theorem (Berkovich 99)

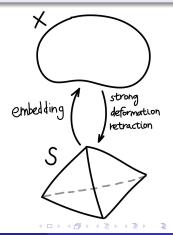
Given a nice formal model of X, one can construct a strong deformation retraction from X to a polyhedral complex S.



Theorem (Berkovich 99)

Given a nice formal model of X, one can construct a strong deformation retraction from X to a polyhedral complex S.

- X : K3 surface of type III degeneration
- The skeleton S is a polyhedral complex homeomorphic to S^2 .



First steps in enumerative non-archimedean geometry

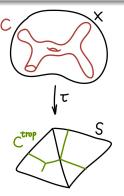
Q: How to do enumerative geometry in non-archimedean analytic spaces?

First steps in enumerative non-archimedean geometry

Q: How to do enumerative geometry in non-archimedean analytic spaces? **A:** Here are the first steps I developed in the last few years:

Theorem (Y, arXiv:1304.2251)

Under the retraction τ , any holomorphic curve C in X becomes a piecewise linear graph C^{trop} in S which satisfies the generalized balancing conditions.



We call C^{trop} the *tropical curve* associated to *C*.

The balancing conditions are constraints on the shape of $C^{\rm trop}$ around every vertex.

They are determined by the intersection theory on the formal model.

Tropicalization of families of curves

In the theorem above, we considered the tropicalization of a single holomorphic curve.

- Q: What about families of curves?
- A: Fix a real number A, set-theoretically we have

 $\overline{\mathcal{M}}_{g,n}(X,A) \coloneqq \{ \text{ n-pointed genus g stable maps into X with area <math>\leq A \}$

 $|\tau_{\mathcal{M}}|$

 $\mathcal{M}(S, A) \coloneqq \{ \text{ tropical curves in } S \text{ with area} \leq A \}.$

Theorem (Y, arXiv:1401.6452)

 $\overline{\mathcal{M}}_{g,n}(X,A)$ is a proper k-analytic stack if X is proper.

Theorem (Y, arXiv:1407.8444)

 $\mathcal{M}(S, A)$ is a finite compact polyhedral complex. The map $\tau_{\mathcal{M}}$ is continuous. Its image is compact and polyhedral.

Tony Yue YU (Paris VII)

Theorem (Y, arXiv:1401.6452)

 $\overline{\mathcal{M}}_{g,n}(X,A)$ is a proper k-analytic stack if X is proper.

Theorem (Y, arXiv:1407.8444)

 $\mathcal{M}(S, A)$ is a finite compact polyhedral complex. The map $\tau_{\mathcal{M}}$ is continuous. Its image is compact and polyhedral.

Given these preparations, now the enumeration goes as follows:

Theorem (Y, arXiv:1401.6452)

 $\overline{\mathcal{M}}_{g,n}(X,A)$ is a proper k-analytic stack if X is proper.

Theorem (Y, arXiv:1407.8444)

 $\mathcal{M}(S, A)$ is a finite compact polyhedral complex. The map $\tau_{\mathcal{M}}$ is continuous. Its image is compact and polyhedral.

Given these preparations, now the enumeration goes as follows:

- Put enough constraints such that all tropical curves in question become rigid.
- 2 Let Z be a rigid tropical curve. Using the theorems on the previous page, one proves that $\tau_{\mathcal{M}}^{-1}(\{Z\})$ is a proper k-analytic stack.
- So Construct a virtual fundamental class on $\tau_{\mathcal{M}}^{-1}(\{Z\})$, and obtain the number N(Z) of holomorphic curves which tropicalizes to Z.
- Sum of N(Z) over all possible tropical curves Z.

Tony Yue YU (Paris VII)

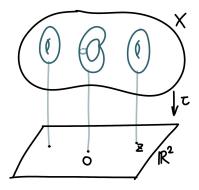
Counting cylinders in log Calabi-Yau surfaces

Let's consider again the situation $X = Y \setminus D$, constant family over $\mathbb{C}((t))$, where Y is a projective surface, and $D = D_1 + \cdots + D_l \in |-K_Y|$ is an anti-canonical cycle of rational curves.

We counted discs inside X ten minutes ago, now let's count cylinders.

Lemma

In this case the skeleton S is a homeomorphic to \mathbb{R}^2 . The retraction map $\tau: X \to S$ is a k-analytic torus fibration outside $O \in S$.

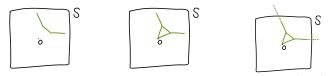


Goal: Define a virtual number of holomorphic cylinders $N(L, \beta)$ given a class $\beta \in NE(Y)$ and a broken path L in $S \setminus O$.

BMD 2014 22 / 23

Goal: Define a virtual number of holomorphic cylinders $N(L, \beta)$ given a class $\beta \in NE(Y)$ and a broken path L in $S \setminus O$.

Step 1: broken path $L \rightsquigarrow$ tropical cylinder \rightsquigarrow extended tropical cylinder



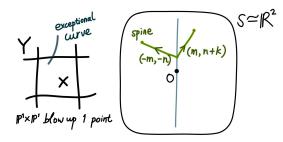
Step 2: By toric blowup, we produce two divisors $\widetilde{D}_1, \widetilde{D}_2 \subset \widetilde{Y}$ corresponding to the two unbounded edges.

Step 3: Let $\mathcal{M}(\tilde{Y}, L, \beta)$ denote the corresponding moduli stack of holomorphic curves. We prove that it is a proper *k*-analytic stack. (Rigidity of the tropical cylinder + the theory of formal models of *k*-analytic stable maps developed in arXiv:1401.6452)

Step 4: Virtual fundamental class \rightsquigarrow virtual number $N(L, \beta)$.

Example (focus-focus singularity)

Example: $Y : \mathbb{P}^1 \times \mathbb{P}^1$ blowup a smooth point in the toric boundary:



We obtain that the corresponding virtual number of cylinders equals $\binom{m}{k}$.

It gives exactly the wall-crossing formula around a focus-focus singularity:

$$(x, y) \longmapsto (x(1+y), y)$$

In particular, $x^m y^n \longmapsto x^m (1+y)^m y^n = \sum_{k=0}^m \binom{m}{k} x^m y^{k+n}.$