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This talk is about enumerative geometry

1 Counting curves (Kontsevich’s recursive formula)

2 Counting discs (Wall-crossing formula)

3 Tools from non-archimedean geometry and tropical geometry

4 Counting cylinders in log Calabi-Yau surfaces
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Counting curves

Q: How many lines pass through
2 given points on a plane?

Q: How many conics pass through
5 generic points on a plane?

Q: How to generalize and obtain more interesting numbers?
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Q: How to generalize and obtain more interesting numbers?

Let us be more precise. Where? What? How?
Explanations:

Target space X : complex algebraic variety
Curve C : closed Riemann surface
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Example: X = CP2

Let’s consider an example X = CP2.
LetM0,0 :=

{
rational curves in CP2 of degree d

}
.

Lemma

dimCM0,0(CP2, d) = 3d − 1.
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Example: X = CP2

Let’s consider an example X = CP2.
LetM0,0 :=

{
rational curves in CP2 of degree d

}
.

Lemma

dimCM0,0(CP2, d) = 3d − 1.

Proof.

f : CP1 −→ CP2

(u, v) 7−→
(
P(u, v),Q(u, v),R(u, v)

)
where P,Q,R are homogeneous polynomials of degree d .
Now it is easy to count the dimension.
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Example: X = CP2

Let’s consider an example X = CP2.
LetM0,0 :=

{
rational curves in CP2 of degree d

}
.

Lemma

dimCM0,0(CP2, d) = 3d − 1.

Q: There are too many rational curves in CP2 of degree d . How to get a
finite number?

A: It suffices to fix 3d − 1 generic points in CP2 and ask our curves to pass
through these points.
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Kontsevich’s recursive formula

Q: There are too many rational curves in CP2 of degree d . How to get a
finite number?

A: It suffices to fix 3d − 1 generic points in CP2 and ask our curves to pass
through these points.

Let Nd denote the number of degree d rational curves in CP2 passing
through 3d − 1 generic points.

We have N1 = 1, N2 = 1, N3 = 12, N4 = 620 (Zeuthen 1874), N5 =?,
N6 =?, . . .

The answer for d ≥ 5 was unknown until the 90s.
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Let Nd denote the number of degree d rational curves in CP2 passing
through 3d − 1 generic points.

We have N1 = 1, N2 = 1, N3 = 12, N4 = 620 (Zeuthen 1874), N5 =?,
N6 =?, . . .

The answer for d ≥ 5 was unknown until the 90s.

Theorem (Kontsevich-Manin 94, Ruan-Tian 94)
The numbers Nd satisfy the following recursive formula

Nd =
∑

d1,d2>0
d1+d2=d

(
3d − 4
3d1 − 2

)
(d1d2)2Nd1Nd2 −

∑
d1,d2>0

d1+d2=d

(
3d − 4
3d2 − 1

)
d1d3

2Nd1Nd2 .

Now we can compute d5 = 87304, d6 = 26312976, d7 = 14616808192,
d8 = 13525751027392, d9 = 19385778269260800, . . .
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Gromov-Witten invariants

Theorem (Kontsevich-Manin 94, Ruan-Tian 94)
The numbers Nd satisfy the following recursive formula

Nd =
∑

d1,d2>0
d1+d2=d

(
3d − 4
3d1 − 2

)
(d1d2)2Nd1Nd2 −

∑
d1,d2>0

d1+d2=d

(
3d − 4
3d2 − 1

)
d1d3

2Nd1Nd2 .

Remark
The numbers Nd are examples of Gromov-Witten invariants.
The recurrence relation above is a particular case of WDVV equations
for Gromov-Witten invariants.
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Counting discs

Inspired by string theory and mirror symmetry, one tries to count not only
“closed curves” in a target space X

but also “open curves” (i.e. Riemann surfaces with boundaries)

Tony Yue YU (Paris VII) Counting holomorphic cylinders BMD 2014 9 / 23



A lot more possibilities!

In order to obtain a finite number of them, we need not only fix some
marked points, but also impose boundary conditions. Let me explain
through an example.

Let X = Y \ D, where Y is a complex projective surface,
D = D1 + · · ·+ Dl ∈ | − KY | is an anti-canonical cycle of rational curves.
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Example

Let X = Y \ D, where Y is a complex projective surface,
D = D1 + · · ·+ Dl ∈ | − KY | is an anti-canonical cycle of rational curves.

We have a projection τ : X → R2, such that the fibers outside the origin are
real 2-dimensional tori.
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For a point z ∈ R2 \ O, a class
γ ∈ H1(τ−1(z),Z), let Ωz(γ) be the
number of holomorphic discs whose
boundary sits in the fiber τ−1(z) and
represents the class γ.

Q: What properties do the numbers Ωz(γ)
have?
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For a point z ∈ R2 \ O, a class
γ ∈ H1(τ−1(z),Z), let Ωz(γ) be the
number of holomorphic discs whose
boundary sits in the fiber τ−1(z) and
represents the class γ.

Q: What properties do the numbers Ωz(γ)
have?

A: Let γz be the primitive vector in the direction
−→
zO. We define a

generating series az(t) =
∑

k≥1 kΩz(kγz)tk , and an automorphism of
C[[u1, u2]] given by Tz : uβ 7→ az(uγz )〈β,γz 〉 · uβ, β ∈ Z.

Theorem (A reformulation of Gross-Pandharipande-Siebert 09)
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For a point z ∈ R2 \ O, a class
γ ∈ H1(τ−1(z),Z), let Ωz(γ) be the
number of holomorphic discs whose
boundary sits in the fiber τ−1(z) and
represents the class γ.

Theorem (A reformulation of Gross-Pandharipande-Siebert 09)

Remark
This is a particular case of the Kontsevich-Soibelman wall-crossing
formula for Donaldson-Thomas invariants.
Like the recursive formula for the numbers Nd , the wall-crossing
formula permits us to compute all the numbers Ωz(γ) starting from
simple initial data.
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Non-archimedean geometry and tropical geometry
Q: How to define counting “open curves” and study their properties?

A: We use/develop tools from non-archimedean geometry and tropical
geometry.
Remark: Algebraic geometry no longer applies here because Riemann
surfaces with boundaries are not algebraic varieties.

The projection τ : X → R2 just
now is a particular case of the
retractions of a
non-archimedean analytic space
X to its skeleton.

Q: What is non-archimedean here in the story?
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Deformation retraction
Q: What is non-archimedean here in the story?

A: A family of complex algebraic varieties Xt parametrized by a punctured
disc gives rise naturally to an analytic space X defined over the
non-archimedean field k = C((t)). (Think of X as the total space of the
family.)

Theorem (Berkovich 99)
Given a nice formal model of X, one can construct a strong deformation
retraction from X to a polyhedral complex S.
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Example of K3 surface

Theorem (Berkovich 99)
Given a nice formal model of X, one can construct a strong deformation
retraction from X to a polyhedral complex S.

X : K3 surface of type III degeneration

The skeleton S is a polyhedral complex
homeomorphic to S2.
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First steps in enumerative non-archimedean geometry
Q: How to do enumerative geometry in non-archimedean analytic spaces?

A: Here are the first steps I developed in the last few years:

Theorem (Y, arXiv:1304.2251)
Under the retraction τ , any holomorphic curve C in X becomes a piecewise
linear graph C trop in S which satisfies the generalized balancing conditions.

We call C trop the tropical curve
associated to C .

The balancing conditions are
constraints on the shape of C trop

around every vertex.

They are determined by the
intersection theory on the formal
model.
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Tropicalization of families of curves
In the theorem above, we considered the tropicalization of a single
holomorphic curve.
Q: What about families of curves?
A: Fix a real number A, set-theoretically we have

Mg ,n(X ,A) := { n-pointed genus g stable maps into X with area ≤ A }

M(S,A) := { tropical curves in S with area ≤ A } .

τM

Theorem (Y, arXiv:1401.6452)
Mg ,n(X ,A) is a proper k-analytic stack if X is proper.

Theorem (Y, arXiv:1407.8444)
M(S,A) is a finite compact polyhedral complex. The map τM is
continuous. Its image is compact and polyhedral.
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The general scheme of enumeration

Theorem (Y, arXiv:1401.6452)
Mg ,n(X ,A) is a proper k-analytic stack if X is proper.

Theorem (Y, arXiv:1407.8444)
M(S,A) is a finite compact polyhedral complex. The map τM is
continuous. Its image is compact and polyhedral.

Given these preparations, now the enumeration goes as follows:

1 Put enough constraints such that all tropical curves in question
become rigid.

2 Let Z be a rigid tropical curve. Using the theorems on the previous
page, one proves that τ−1

M ({Z}) is a proper k-analytic stack.
3 Construct a virtual fundamental class on τ−1

M ({Z}), and obtain the
number N(Z ) of holomorphic curves which tropicalizes to Z .

4 Sum of N(Z ) over all possible tropical curves Z .
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Counting cylinders in log Calabi-Yau surfaces

Let’s consider again the situation X = Y \ D, constant family over C((t)),
where Y is a projective surface, and D = D1 + · · ·+ Dl ∈ | − KY | is an
anti-canonical cycle of rational curves.
We counted discs inside X ten minutes ago, now let’s count cylinders.

Lemma
In this case the skeleton S is a
homeomorphic to R2. The
retraction map τ : X → S is a
k-analytic torus fibration
outside O ∈ S.
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Goal: Define a virtual number of
holomorphic cylinders N(L, β) given a class
β ∈ NE(Y ) and a broken path L in S \ O.

Step 1: broken path L  tropical cylinder  extended tropical cylinder

Step 2: By toric blowup, we produce two divisors D̃1, D̃2 ⊂ Ỹ
corresponding to the two unbounded edges.
Step 3: LetM(Ỹ , L, β) denote the corresponding moduli stack of
holomorphic curves. We prove that it is a proper k-analytic stack. (Rigidity
of the tropical cylinder + the theory of formal models of k-analytic stable
maps developed in arXiv:1401.6452)
Step 4: Virtual fundamental class  virtual number N(L, β).
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Example (focus-focus singularity)

Example: Y : P1 × P1 blowup a smooth point in the toric boundary:

We obtain that the
corresponding virtual
number of cylinders
equals

(m
k
)
.

It gives exactly the wall-crossing formula around a focus-focus singularity:

(x , y) 7−→
(
x(1 + y), y

)
In particular, xmyn 7−→ xm(1 + y)myn =

m∑
k=0

(
m
k

)
xmyk+n.
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