Commutators of singular integrals with BMO functions

Carlos Pérez

Ikerbasque
and
University of the Basque Country

Barcelona Mathematical Days
Societat Catalana de Matemàtiques

Barcelona November 7, 2014

This lecture is dedicated to the memory of my PhD advisor

This lecture is dedicated to the memory of my PhD advisor

Björn Jawerth

November 25,1952-September 2, 2013

- main results are in collaboration with
- main results are in collaboration with

Carmen Ortiz and Ezequiel Rela

- main results are in collaboration with

Carmen Ortiz and Ezequiel Rela

- and related results with
- main results are in collaboration with

Carmen Ortiz and Ezequiel Rela

- and related results with

Daewon Chung and Cristina Pereyra

- main results are in collaboration with

Carmen Ortiz and Ezequiel Rela

- and related results with

Daewon Chung and Cristina Pereyra

Tuomas Hytönen

- main results are in collaboration with

Carmen Ortiz and Ezequiel Rela

- and related results with

Daewon Chung and Cristina Pereyra

Tuomas Hytönen

Teresa Luque and Ezequiel Rela

Commutators of Coifman-Rochberg-Weiss

Commutators of Coifman-Rochberg-Weiss

Let T be any linear operator defined on, say, bounded functions with compact support.

Commutators of Coifman-Rochberg-Weiss

Let T be any linear operator defined on, say, bounded functions with compact support.

Let b be is a locally integrable function on \mathbb{R}^{n}, the "symbol".

Commutators of Coifman-Rochberg-Weiss

Let T be any linear operator defined on, say, bounded functions with compact support.

Let b be is a locally integrable function on \mathbb{R}^{n}, the "symbol".

In particular, the space B.M.O. will play a central role.

Commutators of Coifman-Rochberg-Weiss

Let T be any linear operator defined on, say, bounded functions with compact support.

Let b be is a locally integrable function on \mathbb{R}^{n}, the "symbol".

In particular, the space B.M.O. will play a central role.

Then we define the commutator operator $[b, T]$:

Commutators of Coifman-Rochberg-Weiss

Let T be any linear operator defined on, say, bounded functions with compact support.

Let b be is a locally integrable function on \mathbb{R}^{n}, the "symbol".

In particular, the space B.M.O. will play a central role.

Then we define the commutator operator $[b, T]$:

$$
[\mathrm{b}, \mathrm{~T}](\mathrm{f})=\mathrm{b} \mathrm{~T}(\mathrm{f})-\mathrm{T}(\mathrm{bf})
$$

Commutators of Coifman-Rochberg-Weiss

Let T be any linear operator defined on, say, bounded functions with compact support.

Let b be is a locally integrable function on \mathbb{R}^{n}, the "symbol".

In particular, the space B.M.O. will play a central role.

Then we define the commutator operator $[b, T]$:

$$
[\mathrm{b}, \mathrm{~T}](\mathrm{f})=\mathrm{b} \mathrm{~T}(\mathrm{f})-\mathrm{T}(\mathrm{bf})
$$

More generally, if k is a natural number

Commutators of Coifman-Rochberg-Weiss

Let T be any linear operator defined on, say, bounded functions with compact support.

Let b be is a locally integrable function on \mathbb{R}^{n}, the "symbol".

In particular, the space B.M.O. will play a central role.

Then we define the commutator operator $[b, T]$:

$$
[\mathrm{b}, \mathrm{~T}](\mathrm{f})=\mathrm{b} \mathrm{~T}(\mathrm{f})-\mathrm{T}(\mathrm{bf})
$$

More generally, if k is a natural number

$$
\mathbf{T}_{\mathbf{b}}^{\mathrm{k}}(\mathbf{f})=\overbrace{[b, \cdot \cdot,[b, T]]}^{(\mathrm{k} \text { times })}(\mathbf{f})
$$

Singular Integrals

Singular Integrals

Main example: $\quad T$ is a singular integral operator.

Singular Integrals

Main example: $\quad T$ is a singular integral operator.
To fix ideas we think of the case

Singular Integrals

Main example: $\quad T$ is a singular integral operator.
To fix ideas we think of the case

$$
T f(x)=\int_{\mathbb{R}^{n}} K(x-y) f(y) d y
$$

Singular Integrals

Main example: $\quad T$ is a singular integral operator.
To fix ideas we think of the case

$$
T f(x)=\int_{\mathbb{R}^{n}} K(x-y) f(y) d y
$$

with kernel satisfying the usual size and smoothness condition:

$$
\left|\partial^{\alpha} K(x)\right| \leq \frac{c}{|x|^{n+\alpha}} \quad x \neq 0
$$

Singular Integrals

Main example: $\quad T$ is a singular integral operator.
To fix ideas we think of the case

$$
T f(x)=\int_{\mathbb{R}^{n}} K(x-y) f(y) d y
$$

with kernel satisfying the usual size and smoothness condition:

$$
\left|\partial^{\alpha} K(x)\right| \leq \frac{c}{|x|^{n+\alpha}} \quad x \neq 0
$$

- But we are really interested in Calderón-Zygmund operators

Singular Integrals

Main example: $\quad T$ is a singular integral operator.
To fix ideas we think of the case

$$
T f(x)=\int_{\mathbb{R}^{n}} K(x-y) f(y) d y
$$

with kernel satisfying the usual size and smoothness condition:

$$
\left|\partial^{\alpha} K(x)\right| \leq \frac{c}{|x|^{n+\alpha}} \quad x \neq 0
$$

- But we are really interested in Calderón-Zygmund operators

$$
T f(x)=\int_{\mathbb{R}^{n}} K(x, y) f(y) d y
$$

Singular Integrals

Main example: $\quad T$ is a singular integral operator.
To fix ideas we think of the case

$$
T f(x)=\int_{\mathbb{R}^{n}} K(x-y) f(y) d y
$$

with kernel satisfying the usual size and smoothness condition:

$$
\left|\partial^{\alpha} K(x)\right| \leq \frac{c}{|x|^{n+\alpha}} \quad x \neq 0
$$

- But we are really interested in Calderón-Zygmund operators

$$
T f(x)=\int_{\mathbb{R}^{n}} K(x, y) f(y) d y
$$

(assuming the Lipschitz-Hölder condition on the kernel K)

Singular Integrals

Main example: $\quad T$ is a singular integral operator.
To fix ideas we think of the case

$$
T f(x)=\int_{\mathbb{R}^{n}} K(x-y) f(y) d y
$$

with kernel satisfying the usual size and smoothness condition:

$$
\left|\partial^{\alpha} K(x)\right| \leq \frac{c}{|x|^{n+\alpha}} \quad x \neq 0 .
$$

- But we are really interested in Calderón-Zygmund operators

$$
T f(x)=\int_{\mathbb{R}^{n}} K(x, y) f(y) d y
$$

(assuming the Lipschitz-Hölder condition on the kernel K)

- Rough homogeneous singular integrals can be considered as well.

Commutators with the Hilbert transform

Commutators with the Hilbert transform

In the case of the Hilbert transform

Commutators with the Hilbert transform

In the case of the Hilbert transform

$$
H f(x)=\int_{\mathbb{R}} \frac{f(y)}{x-y} d y
$$

Commutators with the Hilbert transform

In the case of the Hilbert transform

$$
H f(x)=\int_{\mathbb{R}} \frac{f(y)}{x-y} d y
$$

we have the simplest commutator:

Commutators with the Hilbert transform

In the case of the Hilbert transform

$$
H f(x)=\int_{\mathbb{R}} \frac{f(y)}{x-y} d y
$$

we have the simplest commutator:

$$
[b, H] f(x)=\int_{\mathbb{R}} \frac{b(x)-b(y)}{x-y} f(y) d y
$$

Commutators with the Hilbert transform

In the case of the Hilbert transform

$$
H f(x)=\int_{\mathbb{R}} \frac{f(y)}{x-y} d y
$$

we have the simplest commutator:

$$
[b, H] f(x)=\int_{\mathbb{R}} \frac{b(x)-b(y)}{x-y} f(y) d y
$$

or more generally:

Commutators with the Hilbert transform

In the case of the Hilbert transform

$$
H f(x)=\int_{\mathbb{R}} \frac{f(y)}{x-y} d y
$$

we have the simplest commutator:

$$
[b, H] f(x)=\int_{\mathbb{R}} \frac{b(x)-b(y)}{x-y} f(y) d y
$$

or more generally:

$$
H_{b}^{k} f(x)=\int_{\mathbb{R}} \frac{(b(x)-b(y))^{k}}{x-y} f(y) d y
$$

Why commutators?

Why commutators?

- Factorization of the Hardy space $H^{1}\left(\mathbb{R}^{n}\right)$.

Why commutators?

- Factorization of the Hardy space $H^{1}\left(\mathbb{R}^{n}\right)$.
- $W^{1, p}\left(\mathbb{R}^{n}\right)$ theory for (non-divergent) elliptic PDE.

Why commutators?

- Factorization of the Hardy space $H^{1}\left(\mathbb{R}^{n}\right)$.
- $W^{1, p}\left(\mathbb{R}^{n}\right)$ theory for (non-divergent) elliptic PDE.

Work of Chiarenza-Frasca-Longo

Why commutators?

- Factorization of the Hardy space $H^{1}\left(\mathbb{R}^{n}\right)$.
- $W^{1, p}\left(\mathbb{R}^{n}\right)$ theory for (non-divergent) elliptic PDE.

Work of Chiarenza-Frasca-Longo

- Jacobian theory, compensation compactness theory (dealing with nonlinear objects)

Why commutators?

- Factorization of the Hardy space $H^{1}\left(\mathbb{R}^{n}\right)$.
- $W^{1, p}\left(\mathbb{R}^{n}\right)$ theory for (non-divergent) elliptic PDE.

Work of Chiarenza-Frasca-Longo

- Jacobian theory, compensation compactness theory (dealing with nonlinear objects)

Work of Coifman-Lions-Meyer-Semmes

Why commutators?

- Factorization of the Hardy space $H^{1}\left(\mathbb{R}^{n}\right)$.
- $W^{1, p}\left(\mathbb{R}^{n}\right)$ theory for (non-divergent) elliptic PDE.

Work of Chiarenza-Frasca-Longo

- Jacobian theory, compensation compactness theory (dealing with nonlinear objects)

Work of Coifman-Lions-Meyer-Semmes
T. Iwaniec

Why commutators?

- Factorization of the Hardy space $H^{1}\left(\mathbb{R}^{n}\right)$.
- $W^{1, p}\left(\mathbb{R}^{n}\right)$ theory for (non-divergent) elliptic PDE.

Work of Chiarenza-Frasca-Longo

- Jacobian theory, compensation compactness theory (dealing with nonlinear objects)

Work of Coifman-Lions-Meyer-Semmes
T. Iwaniec
S. Müller.

Why commutators?

- Factorization of the Hardy space $H^{1}\left(\mathbb{R}^{n}\right)$.
- $W^{1, p}\left(\mathbb{R}^{n}\right)$ theory for (non-divergent) elliptic PDE.

Work of Chiarenza-Frasca-Longo

- Jacobian theory, compensation compactness theory (dealing with nonlinear objects)

Work of Coifman-Lions-Meyer-Semmes
T. Iwaniec
S. Müller.

- Operator theory: Hankel operator, Bergman spaces.

The 70's: the CRW classical theorem

The 70's: the CRW classical theorem

The first question is whether this is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$ (or else $L^{p}\left(\mathbb{R}^{n}\right)$)

The 70's: the CRW classical theorem

The first question is whether this is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$ (or else $L^{p}\left(\mathbb{R}^{n}\right)$)

Theorem (Coifman-Rochberg-Weiss (1976))
Let $1<p<\infty$. Then

$$
[b, H]: L^{p}(\mathbb{R}) \longrightarrow L^{p}(\mathbb{R}) \quad \Longleftrightarrow \quad b \in B M O(\mathbb{R})
$$

The 70's: the CRW classical theorem

The first question is whether this is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$ (or else $L^{p}\left(\mathbb{R}^{n}\right)$)

Theorem (Coifman-Rochberg-Weiss (1976))
Let $1<p<\infty$. Then

$$
[b, H]: L^{p}(\mathbb{R}) \longrightarrow L^{p}(\mathbb{R}) \quad \Longleftrightarrow \quad b \in B M O(\mathbb{R})
$$

The sufficiency is more general,

The 70's: the CRW classical theorem

The first question is whether this is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$ (or else $L^{p}\left(\mathbb{R}^{n}\right)$)

Theorem (Coifman-Rochberg-Weiss (1976))
Let $1<p<\infty$. Then

$$
[b, H]: L^{p}(\mathbb{R}) \longrightarrow L^{p}(\mathbb{R}) \quad \Longleftrightarrow \quad b \in B M O(\mathbb{R})
$$

The sufficiency is more general,
Theorem If T is any Calderón-Zygmund operator and if $b \in B M O\left(\mathbb{R}^{n}\right)$, then for any $1<p<\infty$

$$
[b, T]: L^{p}\left(\mathbb{R}^{n}\right) \longrightarrow L^{p}\left(\mathbb{R}^{n}\right)
$$

B.M.O., John-Nirenberg and Fefferman-Stein

B.M.O., John-Nirenberg and Fefferman-Stein

Recall that a function b is in B.M.O. if:

B.M.O., John-Nirenberg and Fefferman-Stein

Recall that a function b is in B.M.O. if:

$$
\|b\|_{B M O}=\sup _{Q} \frac{1}{|Q|} \int_{Q}\left|b(y)-b_{Q}\right| d y<\infty
$$

B.M.O., John-Nirenberg and Fefferman-Stein

Recall that a function b is in B.M.O. if:

$$
\|b\|_{B M O}=\sup _{Q} \frac{1}{|Q|} \int_{Q}\left|b(y)-b_{Q}\right| d y<\infty
$$

in other words, the oscillation of the function is bounded.

B.M.O., John-Nirenberg and Fefferman-Stein

Recall that a function b is in B.M.O. if:

$$
\|b\|_{B M O}=\sup _{Q} \frac{1}{|Q|} \int_{Q}\left|b(y)-b_{Q}\right| d y<\infty
$$

in other words, the oscillation of the function is bounded.
A related operator is the sharp maximal function of C. Fefferman-Stein:

B.M.O., John-Nirenberg and Fefferman-Stein

Recall that a function b is in B.M.O. if:

$$
\|b\|_{B M O}=\sup _{Q} \frac{1}{|Q|} \int_{Q}\left|b(y)-b_{Q}\right| d y<\infty
$$

in other words, the oscillation of the function is bounded.
A related operator is the sharp maximal function of C. Fefferman-Stein:

$$
M^{\#}(f)(x)=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right| d y
$$

B.M.O., John-Nirenberg and Fefferman-Stein

Recall that a function b is in B.M.O. if:

$$
\|b\|_{B M O}=\sup _{Q} \frac{1}{|Q|} \int_{Q}\left|b(y)-b_{Q}\right| d y<\infty
$$

in other words, the oscillation of the function is bounded.
A related operator is the sharp maximal function of C. Fefferman-Stein:

$$
M^{\#}(f)(x)=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right| d y
$$

The main estimate:

B.M.O., John-Nirenberg and Fefferman-Stein

Recall that a function b is in B.M.O. if:

$$
\|b\|_{B M O}=\sup _{Q} \frac{1}{|Q|} \int_{Q}\left|b(y)-b_{Q}\right| d y<\infty
$$

in other words, the oscillation of the function is bounded.
A related operator is the sharp maximal function of C. Fefferman-Stein:

$$
M^{\#}(f)(x)=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}\left|f(y)-f_{Q}\right| d y
$$

The main estimate:
C. Fefferman-Stein (≈ 1973)

Let $0<p<\infty$ and let $w \in A_{\infty}$. Then

$$
\|M(f)\|_{L^{p}(w)} \leq c\left\|M^{\#}(f)\right\|_{L^{p}(w)}
$$

Back to the CRW theorem: comments about proofs

Back to the CRW theorem: comments about proofs

- First proof: by good- λ combined with hard work.

Back to the CRW theorem: comments about proofs

- First proof: by good- λ combined with hard work.
- Second proof: (it is in the same paper) by "conjugation" where appears the relevance of the theory of weights

Back to the CRW theorem: comments about proofs

- First proof: by good- λ combined with hard work.
- Second proof: (it is in the same paper) by "conjugation" where appears the relevance of the theory of weights

The proof holds for any linear operator T satisfying a good weighted estimate

Back to the CRW theorem: comments about proofs

- First proof: by good- λ combined with hard work.
- Second proof: (it is in the same paper) by "conjugation" where appears the relevance of the theory of weights

The proof holds for any linear operator T satisfying a good weighted estimate
if z is any complex number define

$$
T_{z}(f)=e^{z b} T\left(e^{-z b} f\right)
$$

Back to the CRW theorem: comments about proofs

- First proof: by good- λ combined with hard work.
- Second proof: (it is in the same paper) by "conjugation" where appears the relevance of the theory of weights

The proof holds for any linear operator T satisfying a good weighted estimate
if z is any complex number define

$$
\mathrm{T}_{\mathbf{Z}}(\mathbf{f})=\mathrm{e}^{\mathrm{zb}} \mathbf{T}\left(\mathrm{e}^{-\mathrm{zb}} \mathbf{f}\right)
$$

Then, a computation gives

Back to the CRW theorem: comments about proofs

- First proof: by good- λ combined with hard work.
- Second proof: (it is in the same paper) by "conjugation" where appears the relevance of the theory of weights

The proof holds for any linear operator T satisfying a good weighted estimate
if z is any complex number define

$$
\mathrm{T}_{\mathbf{Z}}(\mathbf{f})=\mathrm{e}^{\mathrm{zb}} \mathbf{T}\left(\mathrm{e}^{-\mathrm{zb}} \mathbf{f}\right)
$$

Then, a computation gives

$$
[b, T](f)=\left.\frac{d}{d z} T_{z}(f)\right|_{z=0}=
$$

Back to the CRW theorem: comments about proofs

- First proof: by good- λ combined with hard work.
- Second proof: (it is in the same paper) by "conjugation" where appears the relevance of the theory of weights

The proof holds for any linear operator T satisfying a good weighted estimate
if z is any complex number define

$$
\mathrm{T}_{\mathbf{Z}}(\mathbf{f})=\mathrm{e}^{\mathrm{zb}} \mathbf{T}\left(\mathrm{e}^{-\mathrm{zb}} \mathbf{f}\right)
$$

Then, a computation gives

$$
\begin{gathered}
{[b, T](f)=\left.\frac{d}{d z} T_{z}(f)\right|_{z=0}=} \\
=\frac{1}{2 \pi i} \int_{|z|=r} \frac{T_{z}(f)}{z^{2}} d z \quad r>0
\end{gathered}
$$

Back to the CRW theorem: comments about proofs

- First proof: by good- λ combined with hard work.
- Second proof: (it is in the same paper) by "conjugation" where appears the relevance of the theory of weights

The proof holds for any linear operator T satisfying a good weighted estimate
if z is any complex number define

$$
\mathrm{T}_{\mathbf{Z}}(\mathbf{f})=\mathrm{e}^{\mathrm{zb}} \mathbf{T}\left(\mathrm{e}^{-\mathrm{zb}} \mathbf{f}\right)
$$

Then, a computation gives

$$
\begin{gathered}
{[b, T](f)=\left.\frac{d}{d z} T_{z}(f)\right|_{z=0}=} \\
=\frac{1}{2 \pi i} \int_{|z|=r} \frac{T_{z}(f)}{z^{2}} d z \quad r>0
\end{gathered}
$$

by the Cauchy integral theorem.

Proof 2

Now, by Minkowski's inequality (since $p>1$!)

Proof 2

Now, by Minkowski's inequality (since $p>1$!)

$$
\|[b, T](f)\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C r^{-2} \int_{|z|=r}\left\|T_{z}(f)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}|d z| \quad r>0
$$

Proof 2

Now, by Minkowski's inequality (since $p>1$!)

$$
\|[b, T](f)\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C r^{-2} \int_{|z|=r}\left\|T_{z}(f)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}|d z| \quad r>0
$$

We know look at the norm inside $\left\|T_{z}(f)\right\|_{L^{p}}$:

$$
\left\|T_{z}(f)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}=\left\|T\left(e^{-z b} f\right)\right\|_{L^{p}\left(e^{p \mathrm{bRez}}\right)}
$$

Proof 2

Now, by Minkowski's inequality (since $p>1$!)

$$
\|[b, T](f)\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C r^{-2} \int_{|z|=r}\left\|T_{z}(f)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}|d z| \quad r>0
$$

We know look at the norm inside $\left\|T_{z}(f)\right\|_{L^{p}}$:

$$
\left\|T_{z}(f)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}=\left\|T\left(e^{-z b} f\right)\right\|_{L^{p}\left(e^{p \mathrm{bRez}}\right)}
$$

This is a weighted norm inequality

Proof 2

Now, by Minkowski's inequality (since $p>1$!)

$$
\|[b, T](f)\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C r^{-2} \int_{|z|=r}\left\|T_{z}(f)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}|d z| \quad r>0
$$

We know look at the norm inside $\left\|T_{z}(f)\right\|_{L^{p}}$:

$$
\left\|T_{z}(f)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}=\left\|T\left(e^{-z b} f\right)\right\|_{L^{p}\left(e^{p \mathrm{bRez}}\right)}
$$

This is a weighted norm inequality
We need uniform bounds on z.

Proof 2

Now, by Minkowski's inequality (since $p>1$!)

$$
\|[b, T](f)\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C r^{-2} \int_{|z|=r}\left\|T_{z}(f)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}|d z| \quad r>0
$$

We know look at the norm inside $\left\|T_{z}(f)\right\|_{L^{p}}$:

$$
\left\|T_{z}(f)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}=\left\|T\left(e^{-z b} f\right)\right\|_{L^{p}\left(e^{p \mathrm{bRez}}\right)}
$$

This is a weighted norm inequality
We need uniform bounds on z.
classical relationship between $B M O$ and the A_{p} class of weights:

Proof 2

Now, by Minkowski's inequality (since $p>1$!)

$$
\|[b, T](f)\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C r^{-2} \int_{|z|=r}\left\|T_{z}(f)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}|d z| \quad r>0
$$

We know look at the norm inside $\left\|T_{z}(f)\right\|_{L^{p}}$:

$$
\left\|T_{z}(f)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}=\left\|T\left(e^{-z b} f\right)\right\|_{L^{p}\left(e^{p \mathrm{bRez}}\right)}
$$

This is a weighted norm inequality
We need uniform bounds on z.
classical relationship between $B M O$ and the A_{p} class of weights:
If $b \in B M O$ there is an small positive number δ s.t.

Proof 2

Now, by Minkowski's inequality (since $p>1$!)

$$
\|[b, T](f)\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C r^{-2} \int_{|z|=r}\left\|T_{z}(f)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}|d z| \quad r>0
$$

We know look at the norm inside $\left\|T_{z}(f)\right\|_{L^{p}}$:

$$
\left\|T_{z}(f)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}=\left\|T\left(e^{-z b} f\right)\right\|_{L^{p}\left(e^{p \mathrm{bRez}}\right)}
$$

This is a weighted norm inequality
We need uniform bounds on z.
classical relationship between $B M O$ and the A_{p} class of weights:
If $b \in B M O$ there is an small positive number δ s.t.

$$
e^{t b} \in A_{p}, \quad|t|<\delta
$$

The A_{p} class

Recall the definition of A_{p}

The A_{p} class

Recall the definition of A_{p}

$$
[w]_{A_{p}}=\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w d x\right)\left(\frac{1}{|Q|} \int_{Q} w^{\frac{-1}{p-1}} d x\right)^{p-1}<\infty
$$

The A_{p} class

Recall the definition of A_{p}

$$
[w]_{A_{p}}=\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w d x\right)\left(\frac{1}{|Q|} \int_{Q} w^{\frac{-1}{p-1}} d x\right)^{p-1}<\infty
$$

- The definition of A_{∞} :

The A_{p} class

Recall the definition of A_{p}

$$
[w]_{A_{p}}=\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w d x\right)\left(\frac{1}{|Q|} \int_{Q} w^{\frac{-1}{p-1}} d x\right)^{p-1}<\infty
$$

- The definition of A_{∞} :

$$
A_{\infty}=\cup_{p \geq 1} A_{p}
$$

The A_{p} class

Recall the definition of A_{p}

$$
[w]_{A_{p}}=\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w d x\right)\left(\frac{1}{|Q|} \int_{Q} w^{\frac{-1}{p-1}} d x\right)^{p-1}<\infty
$$

- The definition of A_{∞} :

$$
A_{\infty}=\cup_{p \geq 1} A_{p}
$$

- The quantitave A_{∞} constant

The A_{p} class

Recall the definition of A_{p}

$$
\left.{ }^{[w]}\right]_{A_{p}}=\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w d x\right)\left(\frac{1}{|Q|} \int_{Q} w^{\frac{-1}{p-1}} d x\right)^{p-1}<\infty
$$

- The definition of A_{∞} :

$$
A_{\infty}=\cup_{p \geq 1} A_{p}
$$

- The quantitave A_{∞} constant

$$
[\sigma]_{A_{\infty}}=\sup _{Q} \frac{1}{\sigma(Q)} \int_{Q} M\left(\sigma \chi_{Q}\right) d x
$$

The A_{p} class

Recall the definition of A_{p}

$$
\left.{ }^{[w]}\right]_{A_{p}}=\sup _{Q}\left(\frac{1}{|Q|} \int_{Q} w d x\right)\left(\frac{1}{|Q|} \int_{Q} w^{\frac{-1}{p-1}} d x\right)^{p-1}<\infty
$$

- The definition of A_{∞} :

$$
A_{\infty}=\cup_{p \geq 1} A_{p}
$$

- The quantitave A_{∞} constant

$$
[\sigma]_{A_{\infty}}=\sup _{Q} \frac{1}{\sigma(Q)} \int_{Q} M\left(\sigma \chi_{Q}\right) d x
$$

The Fujii-Wilson constant.

Muckenhoupt and Buckley's theorem.

Muckenhoupt and Buckley's theorem.

- Recall the Hardy-Littlewood maximal function

Muckenhoupt and Buckley's theorem.

- Recall the Hardy-Littlewood maximal function

$$
M f(x)=\sup _{x \in Q} \frac{1}{|Q|} \int_{Q}|f(y)| d y
$$

Muckenhoupt and Buckley's theorem.

- Recall the Hardy-Littlewood maximal function

$$
M f(x)=\sup _{x \in Q} \frac{1}{|Q|} \int_{Q}|f(y)| d y
$$

Theorem Let $1<p<\infty$, then

$$
M: L^{p}(w) \longrightarrow L^{p}(w) \quad \Longleftrightarrow \quad w \in A_{p}
$$

Muckenhoupt and Buckley's theorem.

- Recall the Hardy-Littlewood maximal function

$$
M f(x)=\sup _{x \in Q} \frac{1}{|Q|} \int_{Q}|f(y)| d y
$$

Theorem Let $1<p<\infty$, then

$$
M: L^{p}(w) \longrightarrow L^{p}(w) \quad \Longleftrightarrow \quad w \in A_{p}
$$

Furthermore,

$$
\|M\|_{L^{p}(w)} \leq c_{p, n}[w]_{A_{p}}^{\frac{1}{p-1}}
$$

with sharp exponent $\frac{1}{p-1}$ which cannot be replaced by $\frac{1}{p-1}-\epsilon$

Muckenhoupt and Buckley's theorem.

- Recall the Hardy-Littlewood maximal function

$$
M f(x)=\sup _{x \in Q} \frac{1}{|Q|} \int_{Q}|f(y)| d y
$$

Theorem Let $1<p<\infty$, then

$$
M: L^{p}(w) \longrightarrow L^{p}(w) \quad \Longleftrightarrow \quad w \in A_{p}
$$

Furthermore,

$$
\|M\|_{L^{p}(w)} \leq c_{p, n}[w]_{A_{p}}^{\frac{1}{p-1}}
$$

with sharp exponent $\frac{1}{p-1}$ which cannot be replaced by $\frac{1}{p-1}-\epsilon$

- There is no need to find an explicit example, the sharpness of the exponent is due to the following fact:

Muckenhoupt and Buckley's theorem.

- Recall the Hardy-Littlewood maximal function

$$
M f(x)=\sup _{x \in Q} \frac{1}{|Q|} \int_{Q}|f(y)| d y
$$

Theorem Let $1<p<\infty$, then

$$
M: L^{p}(w) \longrightarrow L^{p}(w) \quad \Longleftrightarrow \quad w \in A_{p}
$$

Furthermore,

$$
\|M\|_{L^{p}(w)} \leq c_{p, n}[w]_{A_{p}}^{\frac{1}{p-1}}
$$

with sharp exponent $\frac{1}{p-1}$ which cannot be replaced by $\frac{1}{p-1}-\epsilon$

- There is no need to find an explicit example, the sharpness of the exponent is due to the following fact:

$$
\|M\|_{L^{p}\left(\mathbb{R}^{n}\right)} \approx \frac{1}{p-1} \quad p \rightarrow 1
$$

Muckenhoupt and Buckley’s theorem.

- Recall the Hardy-Littlewood maximal function

$$
M f(x)=\sup _{x \in Q} \frac{1}{|Q|} \int_{Q}|f(y)| d y
$$

Theorem Let $1<p<\infty$, then

$$
M: L^{p}(w) \longrightarrow L^{p}(w) \quad \Longleftrightarrow \quad w \in A_{p}
$$

Furthermore,

$$
\|M\|_{L^{p}(w)} \leq c_{p, n}[w]_{A_{p}}^{\frac{1}{p-1}}
$$

with sharp exponent $\frac{1}{p-1}$ which cannot be replaced by $\frac{1}{p-1}-\epsilon$

- There is no need to find an explicit example, the sharpness of the exponent is due to the following fact:

$$
\|M\|_{L^{p}\left(\mathbb{R}^{n}\right)} \approx \frac{1}{p-1} \quad p \rightarrow 1
$$

Joint work with T. Luque and E. Rela.

Third proof: the case of the Calderón-Zygmund operators

Third proof: the case of the Calderón-Zygmund operators

- Third proof: (due to J. L. Strömberg)

Third proof: the case of the Calderón-Zygmund operators

- Third proof: (due to J. L. Strömberg)

Works only for Calderón-Zygmund operators T :

Third proof: the case of the Calderón-Zygmund operators

- Third proof: (due to J. L. Strömberg)

Works only for Calderón-Zygmund operators T :
based on the following pointwise estimate:

Third proof: the case of the Calderón-Zygmund operators

- Third proof: (due to J. L. Strömberg)

Works only for Calderón-Zygmund operators T :
based on the following pointwise estimate:

$$
M^{\#}([b, T] f)(x) \leq c\|b\|_{B M O}\left(M_{r q}(f)(x)+M_{r}(T f)(x)\right) \quad r, q>1 .
$$

Third proof: the case of the Calderón-Zygmund operators

- Third proof: (due to J. L. Strömberg)

Works only for Calderón-Zygmund operators T :
based on the following pointwise estimate:

$$
M^{\#}([b, T] f)(x) \leq c\|b\|_{B M O}\left(M_{r q}(f)(x)+M_{r}(T f)(x)\right) \quad r, q>1 .
$$

This result recovers the CRW commutator L^{p} theorem with a bonus:

Third proof: the case of the Calderón-Zygmund operators

- Third proof: (due to J. L. Strömberg)

Works only for Calderón-Zygmund operators T :
based on the following pointwise estimate:

$$
M^{\#}([b, T] f)(x) \leq c\|b\|_{B M O}\left(M_{r q}(f)(x)+M_{r}(T f)(x)\right) \quad r, q>1 .
$$

This result recovers the CRW commutator L^{p} theorem with a bonus:
Let $p>1$ and $w \in A_{p}$. Then if $b \in B M O$

$$
[b, T]: L^{p}(w) \rightarrow L^{p}(w)
$$

Third proof: the case of the Calderón-Zygmund operators

- Third proof: (due to J. L. Strömberg)

Works only for Calderón-Zygmund operators T :
based on the following pointwise estimate:

$$
M^{\#}([b, T] f)(x) \leq c\|b\|_{B M O}\left(M_{r q}(f)(x)+M_{r}(T f)(x)\right) \quad r, q>1 .
$$

This result recovers the CRW commutator L^{p} theorem with a bonus:
Let $p>1$ and $w \in A_{p}$. Then if $b \in B M O$

$$
[b, T]: L^{p}(w) \rightarrow L^{p}(w)
$$

Fefferman-Stein inequality must be used

Third proof: the case of the Calderón-Zygmund operators

- Third proof: (due to J. L. Strömberg)

Works only for Calderón-Zygmund operators T :
based on the following pointwise estimate:

$$
M^{\#}([b, T] f)(x) \leq c\|b\|_{B M O}\left(M_{r q}(f)(x)+M_{r}(T f)(x)\right) \quad r, q>1 .
$$

This result recovers the CRW commutator L^{p} theorem with a bonus:
Let $p>1$ and $w \in A_{p}$. Then if $b \in B M O$

$$
[b, T]: L^{p}(w) \rightarrow L^{p}(w)
$$

Fefferman-Stein inequality must be used

$$
\|M(f)\|_{L^{p}(w)} \leq c\left\|M^{\#}(f)\right\|_{L^{p}(w)}
$$

Third proof: the case of the Calderón-Zygmund operators

- Third proof: (due to J. L. Strömberg)

Works only for Calderón-Zygmund operators T :
based on the following pointwise estimate:

$$
M^{\#}([b, T] f)(x) \leq c\|b\|_{B M O}\left(M_{r q}(f)(x)+M_{r}(T f)(x)\right) \quad r, q>1 .
$$

This result recovers the CRW commutator L^{p} theorem with a bonus:
Let $p>1$ and $w \in A_{p}$. Then if $b \in B M O$

$$
[b, T]: L^{p}(w) \rightarrow L^{p}(w)
$$

Fefferman-Stein inequality must be used

$$
\|M(f)\|_{L^{p}(w)} \leq c\left\|M^{\#}(f)\right\|_{L^{p}(w)}
$$

together with Muckenhoupt's theorem and the R.H.I.'s property of A_{p} weights.

The 90's: End-point estimates and related results

The 90's: End-point estimates and related results

Two main ideas I want to convey throughout the talk:

The 90's: End-point estimates and related results

Two main ideas I want to convey throughout the talk:

- These commutators are NOT Calderón-Zygmund Operators

The 90's: End-point estimates and related results

Two main ideas I want to convey throughout the talk:

- These commutators are NOT Calderón-Zygmund Operators
- the commutators become more singular as k increases.

The 90's: End-point estimates and related results

Two main ideas I want to convey throughout the talk:

- These commutators are NOT Calderón-Zygmund Operators
- the commutators become more singular as k increases.
- Hardy endpoint?

The 90's: End-point estimates and related results

Two main ideas I want to convey throughout the talk:

- These commutators are NOT Calderón-Zygmund Operators
- the commutators become more singular as k increases.
- Hardy endpoint?
- The first result indicating that these commutators are different from the standard singular integrals is due M. Paluszyński in his PhD thesis, 1992:

The 90's: End-point estimates and related results

Two main ideas I want to convey throughout the talk:

- These commutators are NOT Calderón-Zygmund Operators
- the commutators become more singular as k increases.
- Hardy endpoint?
- The first result indicating that these commutators are different from the standard singular integrals is due M. Paluszyński in his PhD thesis, 1992:
Recall that any singular integral operator T satisfies

$$
T: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow L^{1}\left(\mathbb{R}^{n}\right)
$$

The 90's: End-point estimates and related results

Two main ideas I want to convey throughout the talk:

- These commutators are NOT Calderón-Zygmund Operators
- the commutators become more singular as k increases.
- Hardy endpoint?
- The first result indicating that these commutators are different from the standard singular integrals is due M. Paluszyński in his PhD thesis, 1992:
Recall that any singular integral operator T satisfies

$$
T: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow L^{1}\left(\mathbb{R}^{n}\right)
$$

Paluszyński proved that the corresponding result

$$
[b, H]: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow L^{1}\left(\mathbb{R}^{n}\right)
$$

The 90's: End-point estimates and related results

Two main ideas I want to convey throughout the talk:

- These commutators are NOT Calderón-Zygmund Operators
- the commutators become more singular as k increases.
- Hardy endpoint?
- The first result indicating that these commutators are different from the standard singular integrals is due M. Paluszyński in his PhD thesis, 1992:
Recall that any singular integral operator T satisfies

$$
T: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow L^{1}\left(\mathbb{R}^{n}\right)
$$

Paluszyński proved that the corresponding result

$$
[b, H]: H^{1}\left(\mathbb{R}^{n}\right) \rightarrow L^{1}\left(\mathbb{R}^{n}\right)
$$

is false when b is a $B M O$ function.

The LlogL estimate

- weak type?

The LlogL estimate

- weak type?
- A natural question within the Calderón-Zygmund is whether these commutators satisfy a weak type $(1,1)$ inequality, namely

The LlogL estimate

- weak type?
- A natural question within the Calderón-Zygmund is whether these commutators satisfy a weak type $(1,1)$ inequality, namely

$$
[b, T]: L^{1, \infty}\left(\mathbb{R}^{n}\right) \rightarrow L^{1}\left(\mathbb{R}^{n}\right)
$$

The LlogL estimate

- weak type?
- A natural question within the Calderón-Zygmund is whether these commutators satisfy a weak type $(1,1)$ inequality, namely

$$
[b, T]: L^{1, \infty}\left(\mathbb{R}^{n}\right) \rightarrow L^{1}\left(\mathbb{R}^{n}\right)
$$

- In general this is NOT TRUE

The LlogL estimate

- weak type?
- A natural question within the Calderón-Zygmund is whether these commutators satisfy a weak type $(1,1)$ inequality, namely

$$
[b, T]: L^{1, \infty}\left(\mathbb{R}^{n}\right) \rightarrow L^{1}\left(\mathbb{R}^{n}\right)
$$

- In general this is NOT TRUE
- What is the right endpoint?

The LlogL estimate

- weak type?
- A natural question within the Calderón-Zygmund is whether these commutators satisfy a weak type $(1,1)$ inequality, namely

$$
[b, T]: L^{1, \infty}\left(\mathbb{R}^{n}\right) \rightarrow L^{1}\left(\mathbb{R}^{n}\right)
$$

- In general this is NOT TRUE
- What is the right endpoint?

Let $b \in B M O$, there exists $c>0$ such that

$$
\left|\left\{y \in \mathbb{R}^{n}:|[b, T] f(y)|>\lambda\right\}\right| \leq c \int_{\mathbb{R}^{n}} \Phi\left(\frac{|f(x)|}{\lambda}\right) d x
$$

where $\Phi(t)=t\left(1+\log ^{+} t\right)$.

The LlogL estimate

- weak type?
- A natural question within the Calderón-Zygmund is whether these commutators satisfy a weak type $(1,1)$ inequality, namely

$$
[b, T]: L^{1, \infty}\left(\mathbb{R}^{n}\right) \rightarrow L^{1}\left(\mathbb{R}^{n}\right)
$$

- In general this is NOT TRUE
- What is the right endpoint?

Let $b \in B M O$, there exists $c>0$ such that

$$
\begin{aligned}
& \quad\left|\left\{y \in \mathbb{R}^{n}:|[b, T] f(y)|>\lambda\right\}\right| \leq c \int_{\mathbb{R}^{n}} \Phi\left(\frac{|f(x)|}{\lambda}\right) d x \quad \lambda>0 \\
& \text { where } \Phi(t)=t\left(1+\log ^{+} t\right) .
\end{aligned}
$$

Can interpolate with these kind of estimates.

Relationship with M^{2}

Relationship with M^{2}

- A second question is what is the right maximal operator "controlling" these commutators.

Relationship with M^{2}

- A second question is what is the right maximal operator "controlling" these commutators.

It was shown in these papers that these commutators are not the "controlled" by the Hardy-Littlewood maximal M

Relationship with M^{2}

- A second question is what is the right maximal operator "controlling" these commutators.

It was shown in these papers that these commutators are not the "controlled" by the Hardy-Littlewood maximal M
instead: $\quad M^{2}=M \circ M \quad$ is the right one.

Relationship with M^{2}

- A second question is what is the right maximal operator "controlling" these commutators.

It was shown in these papers that these commutators are not the "controlled" by the Hardy-Littlewood maximal M
instead: $\quad M^{2}=M \circ M \quad$ is the right one.

- We observe that M^{2} is not of weak type one and is of $L \log L$ type

Relationship with M^{2}

- A second question is what is the right maximal operator "controlling" these commutators.

It was shown in these papers that these commutators are not the "controlled" by the Hardy-Littlewood maximal M instead: $\quad M^{2}=M \circ M \quad$ is the right one.

- We observe that M^{2} is not of weak type one and is of $L \log L$ type

Theorem

$$
\begin{aligned}
& \sup _{t>0} \frac{1}{\Phi\left(\frac{1}{t}\right)}\left|\left\{y \in \mathbb{R}^{n}:|[b, T] f(y)|>t\right\}\right| \\
& \leq c \sup _{t>0} \frac{1}{\Phi\left(\frac{1}{t}\right)}\left|\left\{y \in \mathbb{R}^{n}: M^{2} f(y)>t\right\}\right|
\end{aligned}
$$

Relationship with M^{2}

- A second question is what is the right maximal operator "controlling" these commutators.

It was shown in these papers that these commutators are not the "controlled" by the Hardy-Littlewood maximal M instead: $\quad M^{2}=M \circ M \quad$ is the right one.

- We observe that M^{2} is not of weak type one and is of $L \log L$ type

Theorem

$$
\begin{aligned}
& \sup _{t>0} \frac{1}{\Phi\left(\frac{1}{t}\right)}\left|\left\{y \in \mathbb{R}^{n}:|[b, T] f(y)|>t\right\}\right| \\
& \leq c \sup _{t>0} \frac{1}{\Phi\left(\frac{1}{t}\right)}\left|\left\{y \in \mathbb{R}^{n}: M^{2} f(y)>t\right\}\right|
\end{aligned}
$$

where as above $\Phi(t)=t\left(1+\log ^{+} t\right)$. In fact is false for $\Phi(t)=t$.

Key pointwise estimate

Key pointwise estimate

It is unfortunate that the "conjugation" method above DOES NOT WORK to prove these estimates.

Key pointwise estimate

It is unfortunate that the "conjugation" method above DOES NOT WORK to prove these estimates.

The proof is based on the following pointwise inequality:

Key pointwise estimate

It is unfortunate that the "conjugation" method above DOES NOT WORK to prove these estimates.

The proof is based on the following pointwise inequality:

Theorem If $\quad \epsilon>0$, then there is a constant c such that

$$
M_{\epsilon / 2}^{\#}([b, T]) \leq c\left(M_{\epsilon}(T f)+M^{2}(f)\right)
$$

Key pointwise estimate

It is unfortunate that the "conjugation" method above DOES NOT WORK to prove these estimates.

The proof is based on the following pointwise inequality:
Theorem If $\quad \epsilon>0$, then there is a constant c such that

$$
M_{\epsilon / 2}^{\#}([b, T]) \leq c\left(M_{\epsilon}(T f)+M^{2}(f)\right)
$$

Let $\quad 0<p<\infty$ and $w \in A_{\infty}$, then there is a constant c such that

$$
\|[b, T](f)\|_{L^{p}(w)} \leq c\left\|M^{2}(f)\right\|_{L^{p}(w)}
$$

Key pointwise estimate

It is unfortunate that the "conjugation" method above DOES NOT WORK to prove these estimates.

The proof is based on the following pointwise inequality:
Theorem If $\quad \epsilon>0$, then there is a constant c such that

$$
M_{\epsilon / 2}^{\#}([b, T]) \leq c\left(M_{\epsilon}(T f)+M^{2}(f)\right)
$$

Let $\quad 0<p<\infty$ and $w \in A_{\infty}$, then there is a constant c such that

$$
\|[b, T](f)\|_{L^{p}(w)} \leq c\left\|M^{2}(f)\right\|_{L^{p}(w)}
$$

C.P. 1995

Key pointwise estimate

It is unfortunate that the "conjugation" method above DOES NOT WORK to prove these estimates.

The proof is based on the following pointwise inequality:
Theorem If $\quad \epsilon>0$, then there is a constant c such that

$$
M_{\epsilon / 2}^{\#}([b, T]) \leq c\left(M_{\epsilon}(T f)+M^{2}(f)\right)
$$

Let $\quad 0<p<\infty$ and $w \in A_{\infty}$, then there is a constant c such that

$$
\|[b, T](f)\|_{L^{p}(w)} \leq c\left\|M^{2}(f)\right\|_{L^{p}(w)}
$$

C.P. 1995

Is sharp, M^{2} cannot be replaced by M.

The 00's

Joint work with Gladis Pradolini ≈ 2000.

The 00's

Joint work with Gladis Pradolini ≈ 2000.
We found a direct proof by means of a variant of the Calderón-Zygmund Operators type decomposition.

The 00's

Joint work with Gladis Pradolini ≈ 2000.
We found a direct proof by means of a variant of the Calderón-Zygmund Operators type decomposition.

We can even put general weights

The 00's

Joint work with Gladis Pradolini ≈ 2000.
We found a direct proof by means of a variant of the Calderón-Zygmund Operators type decomposition.

We can even put general weights

Theorem

There exists a positive constant c such that
$w\left(\left\{x \in \mathbb{R}^{n}:|[b, T] f(x)|>\lambda\right\}\right) \leq c_{\epsilon} \int_{\mathbb{R}^{n}} \Phi\left(\frac{|f(x)|}{\lambda}\right) M_{L(\log L)^{1+\epsilon}}(w)(x) d x$ where $\Phi(t)=t\left(1+\log ^{+} t\right)$.

The 00's

Joint work with Gladis Pradolini ≈ 2000.
We found a direct proof by means of a variant of the Calderón-Zygmund Operators type decomposition.

We can even put general weights

Theorem

There exists a positive constant c such that
$w\left(\left\{x \in \mathbb{R}^{n}:|[b, T] f(x)|>\lambda\right\}\right) \leq c_{\epsilon} \int_{\mathbb{R}^{n}} \Phi\left(\frac{|f(x)|}{\lambda}\right) M_{L(\log L)^{1+\epsilon}}(w)(x) d x$ where $\Phi(t)=t\left(1+\log ^{+} t\right)$.
compare with

The 00's

Joint work with Gladis Pradolini ≈ 2000.
We found a direct proof by means of a variant of the Calderón-Zygmund Operators type decomposition.

We can even put general weights

Theorem

There exists a positive constant c such that

$$
\begin{aligned}
& w\left(\left\{x \in \mathbb{R}^{n}:|[b, T] f(x)|>\lambda\right\}\right) \leq c_{\epsilon} \int_{\mathbb{R}^{n}} \Phi\left(\frac{|f(x)|}{\lambda}\right) M_{L(\log L)^{1+\epsilon}}(w)(x) d x \\
& \text { where } \Phi(t)=t\left(1+\log ^{+} t\right) .
\end{aligned}
$$

compare with

$$
\|T f\|_{L^{1, \infty}(w)} \leq \frac{c_{T}}{\varepsilon} \int_{\mathbb{R}^{n}}|f(x)| M_{L(\log L)^{\varepsilon}}(w)(x) d x
$$

The decade 2010: Commutators and Quadratic estimates

The decade 2010: Commutators and Quadratic estimates

Joint work with D. Chung and C. Pereyra.

The decade 2010: Commutators and Quadratic estimates

Joint work with D. Chung and C. Pereyra.

Theorem Let T be any LINEAR operator such that for some $\alpha>0$

$$
\|T\|_{L^{2}(w)} \leq c[w]_{A_{2}}^{\alpha} \quad w \in A_{2}
$$

The decade 2010: Commutators and Quadratic estimates

Joint work with D. Chung and C. Pereyra.

Theorem Let T be any LINEAR operator such that for some $\alpha>0$

$$
\|T\|_{L^{2}(w)} \leq c[w]_{A_{2}}^{\alpha} \quad w \in A_{2}
$$

then

The decade 2010: Commutators and Quadratic estimates

Joint work with D. Chung and C. Pereyra.

Theorem Let T be any LINEAR operator such that for some $\alpha>0$

$$
\|T\|_{L^{2}(w)} \leq c[w]_{A_{2}}^{\alpha} \quad w \in A_{2}
$$

then

$$
\|[b, T]\|_{L^{2}(w)} \leq c\|b\|_{B M O}[w]_{A_{2}}^{1+\alpha} \quad w \in A_{2}, b \in B M O
$$

The decade 2010: Commutators and Quadratic estimates

Joint work with D. Chung and C. Pereyra.

Theorem Let T be any LINEAR operator such that for some $\alpha>0$

$$
\|T\|_{L^{2}(w)} \leq c[w]_{A_{2}}^{\alpha} \quad w \in A_{2}
$$

then

$$
\|[b, T]\|_{L^{2}(w)} \leq c\|b\|_{B M O}[w]_{A_{2}}^{1+\alpha} \quad w \in A_{2}, b \in B M O
$$

The method of proof, by sharpening the conjugation method T_{z}

The A_{p} theory: the extrapolation theorem

The A_{p} theory: the extrapolation theorem
Corollary If T is linear and satisfies $\|T\|_{L^{2}(w)} \leq c[w]_{A_{2}}^{\alpha} \quad w \in A_{2}$, then

$$
\|[b, T]\|_{L^{p}(w)} \leq c_{p, T}\|b\|_{B M O}[w]_{A_{p}}^{(1+\alpha) \max \left\{1, \frac{1}{p-1}\right\}} \quad 1<p<\infty
$$

The A_{p} theory: the extrapolation theorem
Corollary If T is linear and satisfies $\|T\|_{L^{2}(w)} \leq c[w]_{A_{2}}^{\alpha} \quad w \in A_{2}$, then

$$
\|[b, T]\|_{L^{p}(w)} \leq c_{p, T}\|b\|_{B M O}[w]_{A_{p}}^{(1+\alpha) \max \left\{1, \frac{1}{p-1}\right\}} \quad 1<p<\infty
$$

In particular, we have the following consequence

The A_{p} theory: the extrapolation theorem
Corollary If T is linear and satisfies $\|T\|_{L^{2}(w)} \leq c[w]_{A_{2}}^{\alpha} \quad w \in A_{2}$, then

$$
\|[b, T]\|_{L^{p}(w)} \leq c_{p, T}\|b\|_{B M O}[w]_{A_{p}}^{(1+\alpha) \max \left\{1, \frac{1}{p-1}\right\}} \quad 1<p<\infty
$$

In particular, we have the following consequence

Corollary

If T is a Calderón-Zygmund Operators operator, then

$$
\|[b, T]\|_{L^{p}(w)} \leq c_{p, T}\|b\|_{B M O}[w]_{A_{p}}^{2 \max \left\{1, \frac{1}{p-1}\right\}} \quad 1<p<\infty
$$

and the exponent is sharp.

The A_{p} theory: the extrapolation theorem
Corollary If T is linear and satisfies $\|T\|_{L^{2}(w)} \leq c[w]_{A_{2}}^{\alpha} \quad w \in A_{2}$, then

$$
\|[b, T]\|_{L^{p}(w)} \leq c_{p, T}\|b\|_{B M O}[w]_{A_{p}}^{(1+\alpha) \max \left\{1, \frac{1}{p-1}\right\}} \quad 1<p<\infty
$$

In particular, we have the following consequence

Corollary

If T is a Calderón-Zygmund Operators operator, then

$$
\|[b, T]\|_{L^{p}(w)} \leq c_{p, T}\|b\|_{B M O}[w]_{A_{p}}^{2 \max \left\{1, \frac{1}{p-1}\right\}} \quad 1<p<\infty
$$

and the exponent is sharp.

- There is no need to find an explicit example, the sharpness of the exponent is due to the following fact:

The A_{p} theory: the extrapolation theorem
Corollary If T is linear and satisfies $\|T\|_{L^{2}(w)} \leq c[w]_{A_{2}}^{\alpha} \quad w \in A_{2}$, then

$$
\|[b, T]\|_{L^{p}(w)} \leq c_{p, T}\|b\|_{B M O}[w]_{A_{p}}^{(1+\alpha) \max \left\{1, \frac{1}{p-1}\right\}} \quad 1<p<\infty
$$

In particular, we have the following consequence

Corollary

If T is a Calderón-Zygmund Operators operator, then

$$
\|[b, T]\|_{L^{p}(w)} \leq c_{p, T}\|b\|_{B M O}[w]_{A_{p}}^{2 \max \left\{1, \frac{1}{p-1}\right\}} \quad 1<p<\infty
$$

and the exponent is sharp.

- There is no need to find an explicit example, the sharpness of the exponent is due to the following fact:

$$
\|[b, H]\|_{L^{p}(\mathbb{R})} \approx \frac{1}{(p-1)^{2}} \quad p \rightarrow 1
$$

Mixed $A_{2}-A_{\infty}$ theory

Mixed $A_{2}-A_{\infty}$ theory

Assume that T is any Calderón-Zygmund Operators operator.

Mixed $A_{2}-A_{\infty}$ theory

Assume that T is any Calderón-Zygmund Operators operator.

Theorem (C.P. \& T. Hytönen)

$$
\|T\|_{L^{2}(w)} \leq c[w]_{A_{2}}^{1 / 2}\left([w]_{A_{\infty}}+\left[w^{-1}\right]_{A_{\infty}}\right)^{1 / 2}
$$

Mixed $A_{2}-A_{\infty}$ theory

Assume that T is any Calderón-Zygmund Operators operator.

Theorem (C.P. \& T. Hytönen)

$$
\|T\|_{L^{2}(w)} \leq c[w]_{A_{2}}^{1 / 2}\left([w]_{A_{\infty}}+\left[w^{-1}\right]_{A_{\infty}}\right)^{1 / 2}
$$

As a consequence we have

Mixed $A_{2}-A_{\infty}$ theory

Assume that T is any Calderón-Zygmund Operators operator.

Theorem (C.P. \& T. Hytönen)

$$
\|T\|_{L^{2}(w)} \leq c[w]_{A_{2}}^{1 / 2}\left([w]_{A_{\infty}}+\left[w^{-1}\right]_{A_{\infty}}\right)^{1 / 2}
$$

As a consequence we have

$$
\|T\|_{L^{2}(w)} \leq c_{T}[w]_{A_{2}}
$$

Mixed $A_{2}-A_{\infty}$ theory

Assume that T is any Calderón-Zygmund Operators operator.

Theorem (C.P. \& T. Hytönen)

$$
\|T\|_{L^{2}(w)} \leq c[w]_{A_{2}}^{1 / 2}\left([w]_{A_{\infty}}+\left[w^{-1}\right]_{A_{\infty}}\right)^{1 / 2}
$$

As a consequence we have

$$
\|T\|_{L^{2}(w)} \leq c_{T}[w]_{A_{2}}
$$

For the commutator we have the following result

Mixed $A_{2}-A_{\infty}$ theory

Assume that T is any Calderón-Zygmund Operators operator.

Theorem (C.P. \& T. Hytönen)

$$
\|T\|_{L^{2}(w)} \leq c[w]_{A_{2}}^{1 / 2}\left([w]_{A_{\infty}}+\left[w^{-1}\right]_{A_{\infty}}\right)^{1 / 2}
$$

As a consequence we have

$$
\|T\|_{L^{2}(w)} \leq c_{T}[w]_{A_{2}}
$$

For the commutator we have the following result
Theorem (C.P. \& T. Hytönen)

$$
\|[b, T]\|_{L^{2}(w)} \leq c[w]_{A_{2}}^{1 / 2}\left([w]_{A_{\infty}}+\left[w^{-1}\right]_{A_{\infty}}\right)^{3 / 2}\|b\|_{B M O}
$$

Further comments

Further comments

- As before we can recover the previous result:

Further comments

- As before we can recover the previous result:

$$
\|[b, T]\|_{L^{2}(w)} \leq c[w]_{A_{2}}^{2}\|b\|_{B M O}
$$

Further comments

- As before we can recover the previous result:

$$
\|[b, T]\|_{L^{2}(w)} \leq c[w]_{A_{2}}^{2}\|b\|_{B M O}
$$

- For higher order commutators we have,

Further comments

- As before we can recover the previous result:

$$
\|[b, T]\|_{L^{2}(w)} \leq c[w]_{A_{2}}^{2}\|b\|_{B M O}
$$

- For higher order commutators we have,

$$
\left\|T_{b}^{k}\right\|_{L^{2}(w)} \leq c[w]_{A_{2}}^{1 / 2}\left([w]_{A_{\infty}}+[\sigma]_{A_{\infty}}\right)^{k+1 / 2}\|b\|_{B M O}^{k}
$$

Further comments

- As before we can recover the previous result:

$$
\|[b, T]\|_{L^{2}(w)} \leq c[w]_{A_{2}}^{2}\|b\|_{B M O}
$$

- For higher order commutators we have,

$$
\left\|T_{b}^{k}\right\|_{L^{2}(w)} \leq c[w]_{A_{2}}^{1 / 2}\left([w]_{A_{\infty}}+[\sigma]_{A_{\infty}}\right)^{k+1 / 2}\|b\|_{B M O}^{k}
$$

- There is an A_{1} type theory that I will skip.

An important key fact: the sharp RHI property

An important key fact: the sharp RHI property

If $w \in A_{\infty}$ satisfies a Reverse Hölder Inequality: for some $r, c>1$

An important key fact: the sharp RHI property

If $w \in A_{\infty}$ satisfies a Reverse Hölder Inequality: for some $r, c>1$

$$
\left(\frac{1}{|Q|} \int_{Q} w^{r} d x\right)^{\frac{1}{r}} \leq \frac{c}{|Q|} \int_{Q} w d x
$$

An important key fact: the sharp RHI property

If $w \in A_{\infty}$ satisfies a Reverse Hölder Inequality: for some $r, c>1$

$$
\left(\frac{1}{|Q|} \int_{Q} w^{r} d x\right)^{\frac{1}{r}} \leq \frac{c}{|Q|} \int_{Q} w d x
$$

Theorem

Let $w \in A_{\infty}$. Then,

$$
\left(\frac{1}{|Q|} \int_{Q} w^{1+\frac{1}{\tau_{n}[w]_{A \infty}}}\right)^{\frac{1}{1+\frac{1}{\tau_{n}[w]_{A \infty}}}} \leq \frac{2}{|Q|} \int_{Q} w
$$

An important key fact: the sharp RHI property

If $w \in A_{\infty}$ satisfies a Reverse Hölder Inequality: for some $r, c>1$

$$
\left(\frac{1}{|Q|} \int_{Q} w^{r} d x\right)^{\frac{1}{r}} \leq \frac{c}{|Q|} \int_{Q} w d x
$$

Theorem

Let $w \in A_{\infty}$. Then,

$$
\left(\frac{1}{|Q|} \int_{Q} w^{1+\frac{1}{\tau_{n}[w]_{A \infty}}}\right)^{\frac{1}{1+\frac{1}{\tau_{n}[w]_{\infty}}}} \leq \frac{2}{|Q|} \int_{Q} w^{\frac{1}{2}}
$$

linearity in $[w]_{A_{\infty}}$ is best possible.

An important key fact: the sharp RHI property

If $w \in A_{\infty}$ satisfies a Reverse Hölder Inequality: for some $r, c>1$

$$
\left(\frac{1}{|Q|} \int_{Q} w^{r} d x\right)^{\frac{1}{r}} \leq \frac{c}{|Q|} \int_{Q} w d x
$$

Theorem

Let $w \in A_{\infty}$. Then,

$$
\left(\frac{1}{|Q|} \int_{Q} w^{1+\frac{1}{\tau_{n}[w]_{A \infty}}}\right)^{\frac{1}{1+\frac{1}{\tau_{n}[w]_{\infty}}}} \leq \frac{2}{|Q|} \int_{Q} w^{\frac{1}{2}}
$$

linearity in $[w]_{A_{\infty}}$ is best possible.
Joint work with T. Hytönen.

Good-Lambda with an exponential decay.

Good-Lambda with an exponential decay.

$$
\left\|T^{*} f\right\|_{L^{p}(w)} \leq c_{p, w}\|M f\|_{L^{p}(w)}
$$

Good-Lambda with an exponential decay.

$$
\left\|T^{*} f\right\|_{L^{p}(w)} \leq c_{p, w}\|M f\|_{L^{p}(w)}
$$

where T^{*} is the maximal singular integral operator

$$
T^{*} f(x)=\sup _{\varepsilon>0}\left|T_{\varepsilon} f(x)\right|
$$

Good-Lambda with an exponential decay.

$$
\left\|T^{*} f\right\|_{L^{p}(w)} \leq c_{p, w}\|M f\|_{L^{p}(w)}
$$

where T^{*} is the maximal singular integral operator

$$
T^{*} f(x)=\sup _{\varepsilon>0}\left|T_{\varepsilon} f(x)\right|
$$

The proof by R. Coifman and C. Fefferman is based on the good $-\lambda$ estimate:

Good-Lambda with an exponential decay.

$$
\left\|T^{*} f\right\|_{L^{p}(w)} \leq c_{p, w}\|M f\|_{L^{p}(w)}
$$

where T^{*} is the maximal singular integral operator

$$
T^{*} f(x)=\sup _{\varepsilon>0}\left|T_{\varepsilon} f(x)\right|
$$

The proof by R. Coifman and C. Fefferman is based on the good $-\lambda$ estimate:
$w\left(\left\{x \in \mathbb{R}^{n}: T^{*} f(x)>2 \lambda, M f(x) \leq \epsilon \lambda\right\}\right) \leq c \epsilon^{\delta} w\left(\left\{x \in \mathbb{R}^{n}: T^{*} f(x)>\lambda\right\}\right)$, for $\lambda>0$ and ϵ small enough.

Good-Lambda with an exponential decay.

$$
\left\|T^{*} f\right\|_{L^{p}(w)} \leq c_{p, w}\|M f\|_{L^{p}(w)}
$$

where T^{*} is the maximal singular integral operator

$$
T^{*} f(x)=\sup _{\varepsilon>0}\left|T_{\varepsilon} f(x)\right|
$$

The proof by R. Coifman and C. Fefferman is based on the good $-\lambda$ estimate:
$w\left(\left\{x \in \mathbb{R}^{n}: T^{*} f(x)>2 \lambda, M f(x) \leq \epsilon \lambda\right\}\right) \leq c \epsilon^{\delta} w\left(\left\{x \in \mathbb{R}^{n}: T^{*} f(x)>\lambda\right\}\right)$, for $\lambda>0$ and ϵ small enough.

The key point is to show that for appropriate (Whitney) cubes Q and for f such that supp $f \subset Q$ then

Good-Lambda with an exponential decay.

$$
\left\|T^{*} f\right\|_{L^{p}(w)} \leq c_{p, w}\|M f\|_{L^{p}(w)}
$$

where T^{*} is the maximal singular integral operator

$$
T^{*} f(x)=\sup _{\varepsilon>0}\left|T_{\varepsilon} f(x)\right|
$$

The proof by R. Coifman and C. Fefferman is based on the good- λ estimate:
$w\left(\left\{x \in \mathbb{R}^{n}: T^{*} f(x)>2 \lambda, M f(x) \leq \epsilon \lambda\right\}\right) \leq c \epsilon^{\delta} w\left(\left\{x \in \mathbb{R}^{n}: T^{*} f(x)>\lambda\right\}\right)$, for $\lambda>0$ and ϵ small enough.

The key point is to show that for appropriate (Whitney) cubes Q and for f such that supp $f \subset Q$ then

$$
\frac{1}{|Q|}\left|\left\{x \in Q: T^{*} f(x)>2 \lambda, M f(x) \leq \epsilon \lambda\right\}\right| \leq c \epsilon
$$

Good-Lambda with an extra exponential decay.

Good-Lambda with an extra exponential decay.

There is a very nice improvement by S. Buckley (1993) (based on previous work by R. Hunt, L. Carleson):

Good-Lambda with an extra exponential decay.

There is a very nice improvement by S. Buckley (1993) (based on previous work by R. Hunt, L. Carleson):

$$
\frac{1}{|Q|}\left|\left\{x \in Q: T^{*} f(x)>2 \lambda, M f(x) \leq \epsilon \lambda\right\}\right| \leq c e^{-c / \epsilon}
$$

Good-Lambda with an extra exponential decay.

There is a very nice improvement by S. Buckley (1993) (based on previous work by R. Hunt, L. Carleson):

$$
\frac{1}{|Q|}\left|\left\{x \in Q: T^{*} f(x)>2 \lambda, M f(x) \leq \epsilon \lambda\right\}\right| \leq c e^{-c / \epsilon}
$$

In 2002, G. A. Karagulyan improved this result:

Good-Lambda with an extra exponential decay.

There is a very nice improvement by S. Buckley (1993) (based on previous work by R. Hunt, L. Carleson):

$$
\frac{1}{|Q|}\left|\left\{x \in Q: T^{*} f(x)>2 \lambda, M f(x) \leq \epsilon \lambda\right\}\right| \leq c e^{-c / \epsilon}
$$

In 2002, G. A. Karagulyan improved this result:
Theorem (G. A. Karagulyan, 2002) For any cube Q and any f supported on Q

$$
\frac{1}{|Q|}\left|\left\{x \in Q: \frac{T^{*} f(x)}{M f(x)}>t\right\}\right| \leq c e^{-c t} \quad t>0
$$

Good-Lambda with an extra exponential decay.

There is a very nice improvement by S. Buckley (1993) (based on previous work by R. Hunt, L. Carleson):

$$
\frac{1}{|Q|}\left|\left\{x \in Q: T^{*} f(x)>2 \lambda, M f(x) \leq \epsilon \lambda\right\}\right| \leq c e^{-c / \epsilon}
$$

In 2002, G. A. Karagulyan improved this result:
Theorem (G. A. Karagulyan, 2002) For any cube Q and any f supported on Q

$$
\frac{1}{|Q|}\left|\left\{x \in Q: \frac{T^{*} f(x)}{M f(x)}>t\right\}\right| \leq c e^{-c t} \quad t>0
$$

- This can be seen as an improvement of $T: L_{c}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow B M O\left(\mathbb{R}^{n}\right)$

Good-Lambda with an extra exponential decay.

There is a very nice improvement by S. Buckley (1993) (based on previous work by R. Hunt, L. Carleson):

$$
\frac{1}{|Q|}\left|\left\{x \in Q: T^{*} f(x)>2 \lambda, M f(x) \leq \epsilon \lambda\right\}\right| \leq c e^{-c / \epsilon}
$$

In 2002, G. A. Karagulyan improved this result:
Theorem (G. A. Karagulyan, 2002) For any cube Q and any f supported on Q

$$
\frac{1}{|Q|}\left|\left\{x \in Q: \frac{T^{*} f(x)}{M f(x)}>t\right\}\right| \leq c e^{-c t} \quad t>0
$$

- This can be seen as an improvement of $T: L_{c}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow B M O\left(\mathbb{R}^{n}\right)$
- Question: what about other operators?

Good-Lambda with an extra exponential decay.

There is a very nice improvement by S. Buckley (1993) (based on previous work by R. Hunt, L. Carleson):

$$
\frac{1}{|Q|}\left|\left\{x \in Q: T^{*} f(x)>2 \lambda, M f(x) \leq \epsilon \lambda\right\}\right| \leq c e^{-c / \epsilon}
$$

In 2002, G. A. Karagulyan improved this result:
Theorem (G. A. Karagulyan, 2002) For any cube Q and any f supported on Q

$$
\frac{1}{|Q|}\left|\left\{x \in Q: \frac{T^{*} f(x)}{M f(x)}>t\right\}\right| \leq c e^{-c t} \quad t>0
$$

- This can be seen as an improvement of $T: L_{c}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow B M O\left(\mathbb{R}^{n}\right)$
- Question: what about other operators?
- In particular for commutators.

Good-Lambda with an extra exponential decay.

There is a very nice improvement by S. Buckley (1993) (based on previous work by R. Hunt, L. Carleson):

$$
\frac{1}{|Q|}\left|\left\{x \in Q: T^{*} f(x)>2 \lambda, M f(x) \leq \epsilon \lambda\right\}\right| \leq c e^{-c / \epsilon}
$$

In 2002, G. A. Karagulyan improved this result:
Theorem (G. A. Karagulyan, 2002) For any cube Q and any f supported on Q

$$
\frac{1}{|Q|}\left|\left\{x \in Q: \frac{T^{*} f(x)}{M f(x)}>t\right\}\right| \leq c e^{-c t} \quad t>0
$$

- This can be seen as an improvement of $T: L_{c}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow B M O\left(\mathbb{R}^{n}\right)$
- Question: what about other operators?
- In particular for commutators.
- The proof by Karagulyan is not so clear.

The subexponential decay estimate

The subexponential decay estimate

Theorem (C. Ortiz, C.P. and E. Rela) Suppose that $\|b\|_{B M O}=1$, then for any cube Q and for any f supported on Q there are constants c such that

$$
\frac{1}{|Q|}\left|\left\{x \in Q: \frac{|[b, T] f(x)|}{M^{2} f(x)}>t\right\}\right| \leq c e^{-\sqrt{c t}} \quad t>0
$$

The subexponential decay estimate

Theorem (C. Ortiz, C.P. and E. Rela) Suppose that $\|b\|_{B M O}=1$, then for any cube Q and for any f supported on Q there are constants c such that

$$
\frac{1}{|Q|}\left|\left\{x \in Q: \frac{|[b, T] f(x)|}{M^{2} f(x)}>t\right\}\right| \leq c e^{-\sqrt{c t}} \quad t>0
$$

- This shows that $[b, T]: L_{c}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow B M O\left(\mathbb{R}^{n}\right)$ cannot be true but that

The subexponential decay estimate

Theorem (C. Ortiz, C.P. and E. Rela) Suppose that $\|b\|_{B M O}=1$, then for any cube Q and for any f supported on Q there are constants c such that

$$
\frac{1}{|Q|}\left|\left\{x \in Q: \frac{|[b, T] f(x)|}{M^{2} f(x)}>t\right\}\right| \leq c e^{-\sqrt{c t}} \quad t>0
$$

- This shows that $[b, T]: L_{c}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow B M O\left(\mathbb{R}^{n}\right)$ cannot be true but that

$$
[b, T]: L_{c}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow B M O_{1 / 2}\left(\mathbb{R}^{n}\right)
$$

does hold.

The subexponential decay estimate

Theorem (C. Ortiz, C.P. and E. Rela) Suppose that $\|b\|_{B M O}=1$, then for any cube Q and for any f supported on Q there are constants c such that

$$
\frac{1}{|Q|}\left|\left\{x \in Q: \frac{|[b, T] f(x)|}{M^{2} f(x)}>t\right\}\right| \leq c e^{-\sqrt{c t}} \quad t>0
$$

- This shows that $[b, T]: L_{c}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow B M O\left(\mathbb{R}^{n}\right)$ cannot be true but that

$$
[b, T]: L_{c}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow B M O_{1 / 2}\left(\mathbb{R}^{n}\right)
$$

does hold.

- For higher order commutators

The subexponential decay estimate

Theorem (C. Ortiz, C.P. and E. Rela) Suppose that $\|b\|_{B M O}=1$, then for any cube Q and for any f supported on Q there are constants c such that

$$
\frac{1}{|Q|}\left|\left\{x \in Q: \frac{|[b, T] f(x)|}{M^{2} f(x)}>t\right\}\right| \leq c e^{-\sqrt{c t}} \quad t>0
$$

- This shows that $[b, T]: L_{c}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow B M O\left(\mathbb{R}^{n}\right)$ cannot be true but that

$$
[b, T]: L_{c}^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow B M O_{1 / 2}\left(\mathbb{R}^{n}\right)
$$

does hold.

- For higher order commutators

Theorem (higher order case) Idem as above

$$
\frac{1}{|Q|}\left|\left\{x \in Q: \frac{\left|T_{b}^{k} f(x)\right|}{M^{k+1} f(x)}>t\right\}\right| \leq c e^{-(c t)^{1 /(k+1)}} \quad t>0
$$

Sketch of the proof I:

Sketch of the proof I:

- Rubio de Francia's algorithm: Building A_{1} weights with good properties

Sketch of the proof I:

- Rubio de Francia's algorithm: Building A_{1} weights with good properties

Given $h \in L^{r}\left(\mathbb{R}^{n}\right), h \geq 0$, we define

$$
R(h)=\sum_{k=0}^{\infty} \frac{1}{2^{k}} \frac{M^{k} h}{\|M\|_{L^{r}\left(\mathbb{R}^{n}\right)}^{k}},
$$

Sketch of the proof I:

- Rubio de Francia's algorithm: Building A_{1} weights with good properties

Given $h \in L^{r}\left(\mathbb{R}^{n}\right), h \geq 0$, we define

$$
R(h)=\sum_{k=0}^{\infty} \frac{1}{2^{k}} \frac{M^{k} h}{\|M\|_{L^{r}\left(\mathbb{R}^{n}\right)}^{k}},
$$

1) $h \leq R(h)$

Sketch of the proof I:

- Rubio de Francia's algorithm: Building A_{1} weights with good properties

Given $h \in L^{r}\left(\mathbb{R}^{n}\right), h \geq 0$, we define

$$
R(h)=\sum_{k=0}^{\infty} \frac{1}{2^{k}} \frac{M^{k} h}{\|M\|_{L^{r}\left(\mathbb{R}^{n}\right)}^{k}},
$$

1) $h \leq R(h)$
2) $\|R(h)\|_{L^{r}\left(\mathbb{R}^{n}\right)} \leq 2\|h\|_{L^{r}\left(\mathbb{R}^{n}\right)}$

Sketch of the proof I:

- Rubio de Francia's algorithm: Building A_{1} weights with good properties

Given $h \in L^{r}\left(\mathbb{R}^{n}\right), h \geq 0$, we define

$$
R(h)=\sum_{k=0}^{\infty} \frac{1}{2^{k}} \frac{M^{k} h}{\|M\|_{L^{r}\left(\mathbb{R}^{n}\right)}^{k}},
$$

1) $h \leq R(h)$
2) $\|R(h)\|_{L^{r}\left(\mathbb{R}^{n}\right)} \leq 2\|h\|_{L^{r}\left(\mathbb{R}^{n}\right)}$
3) $[R(h)]_{A_{1}} \leq 2\|M\|_{L^{r}\left(\mathbb{R}^{n}\right)} \approx r^{\prime}$

Sketch of the proof I:

- Rubio de Francia's algorithm: Building A_{1} weights with good properties

Given $h \in L^{r}\left(\mathbb{R}^{n}\right), h \geq 0$, we define

$$
R(h)=\sum_{k=0}^{\infty} \frac{1}{2^{k}} \frac{M^{k} h}{\|M\|_{L^{r}\left(\mathbb{R}^{n}\right)}^{k}},
$$

1) $h \leq R(h)$
2) $\|R(h)\|_{L^{r}\left(\mathbb{R}^{n}\right)} \leq 2\|h\|_{L^{r}\left(\mathbb{R}^{n}\right)}$
3) $[R(h)]_{A_{1}} \leq 2\|M\|_{L^{r}\left(\mathbb{R}^{n}\right)} \approx r^{\prime}$

- Factorization: $\left[w_{1} w_{2}^{1-p}\right]_{A_{p}} \leq\left[w_{1}\right]_{A_{1}}\left[w_{2}\right]_{A_{1}}^{p-1}$

Sketch of the proof I:

- Rubio de Francia's algorithm: Building A_{1} weights with good properties

Given $h \in L^{r}\left(\mathbb{R}^{n}\right), h \geq 0$, we define

$$
R(h)=\sum_{k=0}^{\infty} \frac{1}{2^{k}} \frac{M^{k} h}{\|M\|_{L^{r}\left(\mathbb{R}^{n}\right)}^{k}},
$$

1) $h \leq R(h)$
2) $\|R(h)\|_{L^{r}\left(\mathbb{R}^{n}\right)} \leq 2\|h\|_{L^{r}\left(\mathbb{R}^{n}\right)}$
3) $[R(h)]_{A_{1}} \leq 2\|M\|_{L^{r}\left(\mathbb{R}^{n}\right)} \approx r^{\prime}$

- Factorization: $\left[w_{1} w_{2}^{1-p}\right]_{A_{p}} \leq\left[w_{1}\right]_{A_{1}}\left[w_{2}\right]_{A_{1}}^{p-1}$
- Coifman-Rochberg: $\left[(M \mu)^{\delta}\right]_{A_{1}} \leq \frac{c_{n}}{1-\delta}$.

Sketch of the proof I:

- Rubio de Francia's algorithm: Building A_{1} weights with good properties

Given $h \in L^{r}\left(\mathbb{R}^{n}\right), h \geq 0$, we define

$$
R(h)=\sum_{k=0}^{\infty} \frac{1}{2^{k}} \frac{M^{k} h}{\|M\|_{L^{r}\left(\mathbb{R}^{n}\right)}^{k}}
$$

1) $h \leq R(h)$
2) $\|R(h)\|_{L^{r}\left(\mathbb{R}^{n}\right)} \leq 2\|h\|_{L^{r}\left(\mathbb{R}^{n}\right)}$
3) $[R(h)]_{A_{1}} \leq 2\|M\|_{L^{r}\left(\mathbb{R}^{n}\right)} \approx r^{\prime}$

- Factorization: $\left[w_{1} w_{2}^{1-p}\right]_{A_{p}} \leq\left[w_{1}\right]_{A_{1}}\left[w_{2}\right]_{A_{1}}^{p-1}$
- Coifman-Rochberg: $\quad\left[(M \mu)^{\delta}\right]_{A_{1}} \leq \frac{c_{n}}{1-\delta}$.
- The sharp L^{1} weighted Coifman-Fefferman estimate:

$$
\int_{\mathbb{R}^{n}}|[b, T] f| w d x \leq c_{T,\|b\|_{B M O}}[w]_{A \infty}^{2} \int_{\mathbb{R}^{n}} M^{2} f w d x
$$

Sketch of the proof II:

For $p>1$ to be chosen

Sketch of the proof II:

For $p>1$ to be chosen

$$
\left|\left\{x \in Q: \frac{|[b, T] f(x)|}{\left|M^{2} f(x)\right|}>t\right\}\right| \leq \frac{1}{t^{p}}\left\|\frac{[b, T] f}{M^{2} f}\right\|_{L^{p}(Q)}^{p}
$$

Sketch of the proof II:

For $p>1$ to be chosen

$$
\begin{aligned}
& \left|\left\{x \in Q: \frac{|[b, T] f(x)|}{\left|M^{2} f(x)\right|}>t\right\}\right| \leq \frac{1}{t^{p}}\left\|\frac{[b, T] f}{M^{2} f}\right\|_{L^{p}(Q)}^{p} \\
= & \frac{1}{t^{p}}\left(\int_{Q} \frac{|[b, T] f|}{M^{2} f} h\right)^{p} \quad\left(\text { for some }\|h\|_{L^{p^{\prime}}(Q)}=1\right)
\end{aligned}
$$

Sketch of the proof II:

For $p>1$ to be chosen

$$
\begin{aligned}
& \left|\left\{x \in Q: \frac{|[b, T] f(x)|}{\left|M^{2} f(x)\right|}>t\right\}\right| \leq \frac{1}{t^{p}}\left\|\frac{[b, T] f}{M^{2} f}\right\|_{L^{p}(Q)}^{p} \\
= & \frac{1}{t^{p}}\left(\int_{Q} \frac{|[b, T] f|}{M^{2} f} h\right)^{p} \quad\left(\text { for some }\|h\|_{L^{p^{\prime}}(Q)}=1\right) \\
& \leq \frac{1}{t^{p}}\left(\int_{Q} \frac{|[b, T] f|}{M^{2} f} R(h)\right)^{p}=\frac{1}{t^{p}}\left(\int_{Q} \frac{[b, T] f}{M^{2} f} R(h)\right)^{p}
\end{aligned}
$$

Sketch of the proof II:

For $p>1$ to be chosen

$$
\begin{gathered}
\quad\left|\left\{x \in Q: \frac{|[b, T] f(x)|}{\left|M^{2} f(x)\right|}>t\right\}\right| \leq \frac{1}{t^{p}}\left\|\frac{[b, T] f}{M^{2} f}\right\|_{L^{p}(Q)}^{p} \\
=\frac{1}{t^{p}}\left(\int_{Q} \frac{|[b, T] f|}{M^{2} f} h\right)^{p} \quad\left(\text { for some }\|h\|_{L^{p^{\prime}}(Q)}=1\right) \\
\leq \frac{1}{t^{p}}\left(\int_{Q} \frac{|[b, T] f|}{M^{2} f} R(h)\right)^{p}=\frac{1}{t^{p}}\left(\int_{Q} \frac{[b, T] f}{M^{2} f} R(h)\right)^{p} \\
\leq \frac{1}{t^{p}}\left(c\left[w_{f}\right]_{A_{\infty}}^{2} \int_{Q} \frac{M^{2} f}{M^{2} f} R(h)\right)^{p} \quad\left(w_{f}=R(h)\left(M^{2} f\right)^{-1}\right)
\end{gathered}
$$

Sketch of the proof II:

For $p>1$ to be chosen

$$
\begin{gathered}
\quad\left|\left\{x \in Q: \frac{|[b, T] f(x)|}{\left|M^{2} f(x)\right|}>t\right\}\right| \leq \frac{1}{t^{p}}\left\|\frac{[b, T] f}{M^{2} f}\right\|_{L^{p}(Q)}^{p} \\
=\frac{1}{t^{p}}\left(\int_{Q} \frac{|[b, T] f|}{M^{2} f} h\right)^{p} \quad\left(\text { for some }\|h\|_{L^{p^{\prime}}(Q)}=1\right) \\
\leq \frac{1}{t^{p}}\left(\int_{Q} \frac{|[b, T] f|}{M^{2} f} R(h)\right)^{p}=\frac{1}{t^{p}}\left(\int_{Q} \frac{[b, T] f}{M^{2} f} R(h)\right)^{p} \\
\leq \frac{1}{t^{p}}\left(c\left[w_{f}\right]_{A_{\infty}}^{2} \int_{Q} \frac{M^{2} f}{M^{2} f} R(h)\right)^{p} \quad\left(w_{f}=R(h)\left(M^{2} f\right)^{-1}\right) \\
\quad \lesssim \frac{\left[w_{f}\right]_{A_{3}}^{2 p}}{t^{p}}\left(\int_{Q} R(h)\right)^{p} \leq \frac{\left[w_{f}\right]_{A_{3}}^{2 p}}{t^{p}}|Q|
\end{gathered}
$$

Sketch of the proof III:

Sketch of the proof III:

$$
\begin{gathered}
{\left[R(h)\left(M^{2} f\right)^{-1}\right]_{A_{3}}=\left[R(h)\left(M^{2} f\right)^{\frac{1-3}{2}}\right]_{A_{3}}} \\
\quad \leq[R(h)]_{A_{1}}\left[\left(M^{2} f\right)^{\frac{1}{2}}\right]_{A_{1}}^{3-1} \lesssim p
\end{gathered}
$$

Sketch of the proof III:

$$
\begin{gathered}
{\left[R(h)\left(M^{2} f\right)^{-1}\right]_{A_{3}}=\left[R(h)\left(M^{2} f\right)^{\frac{1-3}{2}}\right]_{A_{3}}} \\
\quad \leq[R(h)]_{A_{1}}\left[\left(M^{2} f\right)^{\frac{1}{2}}\right]_{A_{1}}^{3-1} \lesssim p
\end{gathered}
$$

Then for and $p>1$ to be chosen we have obtained

Sketch of the proof III:

$$
\begin{gathered}
{\left[R(h)\left(M^{2} f\right)^{-1}\right]_{A_{3}}=\left[R(h)\left(M^{2} f\right)^{\frac{1-3}{2}}\right]_{A_{3}}} \\
\leq[R(h)]_{A_{1}}\left[\left(M^{2} f\right)^{\frac{1}{2}}\right]_{A_{1}}^{3-1} \lesssim p
\end{gathered}
$$

Then for and $p>1$ to be chosen we have obtained

$$
\frac{1}{|Q|}\left|\left\{x \in Q: \frac{|[b, T] f(x)|}{\left|M^{2} f(x)\right|}>t\right\}\right| \leq\left(\frac{(c p)^{2}}{t}\right)^{p}
$$

Sketch of the proof III:

$$
\begin{gathered}
{\left[R(h)\left(M^{2} f\right)^{-1}\right]_{A_{3}}=\left[R(h)\left(M^{2} f\right)^{\frac{1-3}{2}}\right]_{A_{3}}} \\
\leq[R(h)]_{A_{1}}\left[\left(M^{2} f\right)^{\frac{1}{2}}\right]_{A_{1}}^{3-1} \lesssim p
\end{gathered}
$$

Then for and $p>1$ to be chosen we have obtained

$$
\frac{1}{|Q|}\left|\left\{x \in Q: \frac{|[b, T] f(x)|}{\left|M^{2} f(x)\right|}>t\right\}\right| \leq\left(\frac{(c p)^{2}}{t}\right)^{p}
$$

Then choosing $\frac{(c p)^{2}}{t}=\frac{1}{e}$, namely $p \approx \sqrt{t}$ we have

Sketch of the proof III:

$$
\begin{gathered}
{\left[R(h)\left(M^{2} f\right)^{-1}\right]_{A_{3}}=\left[R(h)\left(M^{2} f\right)^{\frac{1-3}{2}}\right]_{A_{3}}} \\
\leq[R(h)]_{A_{1}}\left[\left(M^{2} f\right)^{\frac{1}{2}}\right]_{A_{1}}^{3-1} \lesssim p
\end{gathered}
$$

Then for and $p>1$ to be chosen we have obtained

$$
\frac{1}{|Q|}\left|\left\{x \in Q: \frac{|[b, T] f(x)|}{\left|M^{2} f(x)\right|}>t\right\}\right| \leq\left(\frac{(c p)^{2}}{t}\right)^{p}
$$

Then choosing $\frac{(c p)^{2}}{t}=\frac{1}{e}$, namely $p \approx \sqrt{t}$ we have

$$
\frac{1}{|Q|}\left|\left\{x \in Q: \frac{|[b, T] f(x)|}{\left|M^{2} f(x)\right|}>t\right\}\right| \leq c e^{-\sqrt{c t}}
$$

concluding the proof.

moltes
 gràcies

moltes
 gràcies

thank you

