Commutators of singular integrals with BMO functions

Carlos Pérez

Ikerbasque and University of the Basque Country

Barcelona Mathematical Days

Societat Catalana de Matemàtiques

Barcelona November 7, 2014

This lecture is dedicated to the memory of my PhD advisor

This lecture is dedicated to the memory of my PhD advisor

Björn Jawerth

November 25,1952 - September 2, 2013

Carmen Ortiz and Ezequiel Rela

Carmen Ortiz and Ezequiel Rela

• and related results with

Carmen Ortiz and Ezequiel Rela

• and related results with

Daewon Chung and Cristina Pereyra

Carmen Ortiz and Ezequiel Rela

• and related results with

Daewon Chung and Cristina Pereyra

Tuomas Hytönen

Carmen Ortiz and Ezequiel Rela

• and related results with

Daewon Chung and Cristina Pereyra

Tuomas Hytönen

Teresa Luque and Ezequiel Rela

Let T be any linear operator defined on, say, bounded functions with compact support.

Let T be any linear operator defined on, say, bounded functions with compact support.

Let b be is a locally integrable function on \mathbb{R}^n , the "symbol".

Let T be any linear operator defined on, say, bounded functions with compact support.

Let b be is a locally integrable function on \mathbb{R}^n , the "symbol".

In particular, the space **B.M.O.** will play a central role.

Let T be any linear operator defined on, say, bounded functions with compact support.

Let b be is a locally integrable function on \mathbb{R}^n , the "symbol".

In particular, the space **B.M.O.** will play a central role.

Then we define the commutator operator [b, T]:

Let T be any linear operator defined on, say, bounded functions with compact support.

Let b be is a locally integrable function on \mathbb{R}^n , the "symbol".

In particular, the space **B.M.O.** will play a central role.

Then we define the commutator operator [b, T]:

[b,T](f) = bT(f) - T(bf)

Let T be any linear operator defined on, say, bounded functions with compact support.

Let b be is a locally integrable function on \mathbb{R}^n , the "symbol".

In particular, the space **B.M.O.** will play a central role.

Then we define the commutator operator [b, T]:

[b,T](f) = bT(f) - T(bf)

More generally, if k is a natural number

Let T be any linear operator defined on, say, bounded functions with compact support.

Let b be is a locally integrable function on \mathbb{R}^n , the "symbol".

In particular, the space **B.M.O.** will play a central role.

Then we define the commutator operator [b, T]:

[b,T](f) = bT(f) - T(bf)

More generally, if k is a natural number

$$\mathbf{T}_{\mathbf{b}}^{\mathbf{k}}(\mathbf{f}) = \underbrace{\overbrace{[b, \cdots, [b, T]]}^{\mathbf{(k \text{ times})}}}_{\mathbf{b}}(\mathbf{f})$$

Main example: T is a singular integral operator.

Main example: T is a singular integral operator.

To fix ideas we think of the case

Main example: T is a singular integral operator.

To fix ideas we think of the case

$$Tf(x) = \int_{\mathbb{R}^n} K(x-y) f(y) dy$$

Main example: T is a singular integral operator.

To fix ideas we think of the case

$$Tf(x) = \int_{\mathbb{R}^n} K(x-y) f(y) \, dy$$

with kernel satisfying the usual size and smoothness condition:

$$|\partial^{\alpha}K(x)| \leq \frac{c}{|x|^{n+\alpha}} \qquad x \neq 0.$$

Main example: T is a singular integral operator.

To fix ideas we think of the case

$$Tf(x) = \int_{\mathbb{R}^n} K(x-y) f(y) \, dy$$

with kernel satisfying the usual size and smoothness condition:

$$|\partial^{\alpha}K(x)| \leq \frac{c}{|x|^{n+\alpha}} \qquad x \neq 0.$$

• But we are really interested in Calderón-Zygmund operators

Main example: T is a singular integral operator.

To fix ideas we think of the case

$$Tf(x) = \int_{\mathbb{R}^n} K(x-y) f(y) \, dy$$

with kernel satisfying the usual size and smoothness condition:

$$|\partial^{\alpha}K(x)| \leq \frac{c}{|x|^{n+\alpha}} \qquad x \neq 0.$$

• But we are really interested in Calderón-Zygmund operators

$$Tf(x) = \int_{\mathbb{R}^n} K(x, y) f(y) dy$$

Main example: T is a singular integral operator.

To fix ideas we think of the case

$$Tf(x) = \int_{\mathbb{R}^n} K(x-y) f(y) \, dy$$

with kernel satisfying the usual size and smoothness condition:

$$|\partial^{\alpha}K(x)| \leq \frac{c}{|x|^{n+\alpha}} \qquad x \neq 0.$$

• But we are really interested in Calderón-Zygmund operators

$$Tf(x) = \int_{\mathbb{R}^n} K(x, y) f(y) dy$$

(assuming the Lipschitz-Hölder condition on the kernel K)

Main example: T is a singular integral operator.

To fix ideas we think of the case

$$Tf(x) = \int_{\mathbb{R}^n} K(x-y) f(y) \, dy$$

with kernel satisfying the usual size and smoothness condition:

$$|\partial^{\alpha}K(x)| \leq \frac{c}{|x|^{n+\alpha}} \qquad x \neq 0.$$

• But we are really interested in Calderón-Zygmund operators

$$Tf(x) = \int_{\mathbb{R}^n} K(x, y) f(y) dy$$

(assuming the Lipschitz-Hölder condition on the kernel K)

• Rough homogeneous singular integrals can be considered as well.

In the case of the Hilbert transform

In the case of the Hilbert transform

$$Hf(x) = \int_{\mathbb{R}} \frac{f(y)}{x - y} dy$$

In the case of the Hilbert transform

$$Hf(x) = \int_{\mathbb{R}} \frac{f(y)}{x - y} dy$$

we have the simplest commutator:

In the case of the Hilbert transform

$$Hf(x) = \int_{\mathbb{R}} \frac{f(y)}{x - y} dy$$

we have the simplest commutator:

$$[b,H]f(x) = \int_{\mathbb{R}} \frac{b(x) - b(y)}{x - y} f(y) \, dy$$

In the case of the Hilbert transform

$$Hf(x) = \int_{\mathbb{R}} \frac{f(y)}{x - y} dy$$

we have the simplest commutator:

$$[b,H]f(x) = \int_{\mathbb{R}} \frac{b(x) - b(y)}{x - y} f(y) \, dy$$

or more generally:

In the case of the Hilbert transform

$$Hf(x) = \int_{\mathbb{R}} \frac{f(y)}{x - y} dy$$

we have the simplest commutator:

$$[b,H]f(x) = \int_{\mathbb{R}} \frac{b(x) - b(y)}{x - y} f(y) \, dy$$

or more generally:

$$H_b^k f(x) = \int_{\mathbb{R}} \frac{(b(x) - b(y))^k}{x - y} f(y) \, dy$$

Why commutators?

Why commutators?

• Factorization of the Hardy space $H^1(\mathbb{R}^n)$.
- Factorization of the Hardy space $H^1(\mathbb{R}^n)$.
- $W^{1,p}(\mathbb{R}^n)$ theory for (non-divergent) elliptic PDE.

- Factorization of the Hardy space $H^1(\mathbb{R}^n)$.
- $W^{1,p}(\mathbb{R}^n)$ theory for (non-divergent) elliptic PDE.

Work of Chiarenza-Frasca-Longo

- Factorization of the Hardy space $H^1(\mathbb{R}^n)$.
- $W^{1,p}(\mathbb{R}^n)$ theory for (non-divergent) elliptic PDE.

Work of Chiarenza-Frasca-Longo

• Jacobian theory, compensation compactness theory (dealing with nonlinear objects)

- Factorization of the Hardy space $H^1(\mathbb{R}^n)$.
- $W^{1,p}(\mathbb{R}^n)$ theory for (non-divergent) elliptic PDE.

Work of Chiarenza-Frasca-Longo

• Jacobian theory, compensation compactness theory (dealing with nonlinear objects)

Work of Coifman-Lions-Meyer-Semmes

- Factorization of the Hardy space $H^1(\mathbb{R}^n)$.
- $W^{1,p}(\mathbb{R}^n)$ theory for (non-divergent) elliptic PDE.

Work of Chiarenza-Frasca-Longo

• Jacobian theory, compensation compactness theory (dealing with nonlinear objects)

Work of Coifman-Lions-Meyer-Semmes T. Iwaniec

- Factorization of the Hardy space $H^1(\mathbb{R}^n)$.
- $W^{1,p}(\mathbb{R}^n)$ theory for (non-divergent) elliptic PDE.

Work of Chiarenza-Frasca-Longo

• Jacobian theory, compensation compactness theory (dealing with nonlinear objects)

Work of Coifman-Lions-Meyer-Semmes

- T. Iwaniec
- S. Müller.

- Factorization of the Hardy space $H^1(\mathbb{R}^n)$.
- $W^{1,p}(\mathbb{R}^n)$ theory for (non-divergent) elliptic PDE.

Work of Chiarenza-Frasca-Longo

• Jacobian theory, compensation compactness theory (dealing with nonlinear objects)

Work of Coifman-Lions-Meyer-Semmes

T. Iwaniec

S. Müller.

• Operator theory: Hankel operator, Bergman spaces.

The first question is whether this is bounded on $L^2(\mathbb{R}^n)$ (or else $L^p(\mathbb{R}^n)$)

The first question is whether this is bounded on $L^2(\mathbb{R}^n)$ (or else $L^p(\mathbb{R}^n)$)

Theorem (Coifman-Rochberg-Weiss (1976)) Let 1 . Then

 $[b,H]: L^p(\mathbb{R}) \longrightarrow L^p(\mathbb{R}) \iff b \in BMO(\mathbb{R})$

The first question is whether this is bounded on $L^2(\mathbb{R}^n)$ (or else $L^p(\mathbb{R}^n)$)

Theorem (Coifman-Rochberg-Weiss (1976)) Let 1 . Then $<math>[b, H] : L^p(\mathbb{R}) \longrightarrow L^p(\mathbb{R}) \iff b \in BMO(\mathbb{R})$

The sufficiency is more general,

The first question is whether this is bounded on $L^2(\mathbb{R}^n)$ (or else $L^p(\mathbb{R}^n)$)

Theorem (Coifman-Rochberg-Weiss (1976)) Let 1 . Then $<math>[b, H] : L^p(\mathbb{R}) \longrightarrow L^p(\mathbb{R}) \iff b \in BMO(\mathbb{R})$

The sufficiency is more general,

Theorem If *T* is any Calderón-Zygmund operator and if $b \in BMO(\mathbb{R}^n)$, then for any 1

 $[b,T]: L^p(\mathbb{R}^n) \longrightarrow L^p(\mathbb{R}^n)$

Recall that a function b is in B.M.O. if:

Recall that a function b is in B.M.O. if:

$$||b||_{BMO} = \sup_{Q} \frac{1}{|Q|} \int_{Q} |b(y) - b_{Q}| dy < \infty$$

Recall that a function b is in B.M.O. if:

$$||b||_{BMO} = \sup_{Q} \frac{1}{|Q|} \int_{Q} |b(y) - b_{Q}| dy < \infty$$

in other words, the oscillation of the function is bounded.

Recall that a function b is in B.M.O. if:

$$\|b\|_{BMO} = \sup_{Q} \frac{1}{|Q|} \int_{Q} |b(y) - b_{Q}| \, dy < \infty$$

in other words, the oscillation of the function is bounded.

A related operator is the sharp maximal function of C. Fefferman-Stein:

Recall that a function b is in B.M.O. if:

$$||b||_{BMO} = \sup_{Q} \frac{1}{|Q|} \int_{Q} |b(y) - b_{Q}| \, dy < \infty$$

in other words, the oscillation of the function is bounded.

A related operator is the sharp maximal function of C. Fefferman-Stein:

$$M^{\#}(f)(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f(y) - f_{Q}| \, dy$$

Recall that a function b is in B.M.O. if:

$$\|b\|_{BMO} = \sup_{Q} \frac{1}{|Q|} \int_{Q} |b(y) - b_{Q}| \, dy < \infty$$

in other words, the oscillation of the function is bounded.

A related operator is the sharp maximal function of C. Fefferman-Stein:

$$M^{\#}(f)(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f(y) - f_{Q}| \, dy$$

The main estimate:

Recall that a function b is in B.M.O. if:

$$\|b\|_{BMO} = \sup_{Q} \frac{1}{|Q|} \int_{Q} |b(y) - b_{Q}| \, dy < \infty$$

in other words, the oscillation of the function is bounded.

A related operator is the sharp maximal function of C. Fefferman-Stein:

$$M^{\#}(f)(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_{Q} |f(y) - f_{Q}| \, dy$$

The main estimate:

C. Fefferman-Stein(\approx 1973) Let $0 and let <math>w \in A_{\infty}$. Then $\|M(f)\|_{L^{p}(w)} \leq c \|M^{\#}(f)\|_{L^{p}(w)}$

• **First proof:** by good- λ combined with hard work.

• **First proof:** by good- λ combined with hard work.

• Second proof: (it is in the same paper) by "conjugation" where appears the relevance of the theory of weights

• **First proof:** by good- λ combined with hard work.

• Second proof: (it is in the same paper) by "conjugation" where appears the relevance of the theory of weights

The proof holds for any linear operator T satisfying a good weighted estimate

• **First proof:** by good- λ combined with hard work.

• Second proof: (it is in the same paper) by "conjugation" where appears the relevance of the theory of weights

The proof holds for any linear operator T satisfying a good weighted estimate

if z is any complex number define

$$T_z(f) = e^{zb}T(e^{-zb}f)$$

• **First proof:** by good- λ combined with hard work.

• Second proof: (it is in the same paper) by "conjugation" where appears the relevance of the theory of weights

The proof holds for any linear operator T satisfying a good weighted estimate

if z is any complex number define

$$T_z(f) = e^{zb}T(e^{-zb}f)$$

Then, a computation gives

• **First proof:** by good- λ combined with hard work.

• Second proof: (it is in the same paper) by "conjugation" where appears the relevance of the theory of weights

The proof holds for any linear operator T satisfying a good weighted estimate

if z is any complex number define

$$T_z(f) = e^{zb}T(e^{-zb}f)$$

Then, a computation gives

$$[b,T](f) = \frac{d}{dz}T_z(f)|_{z=0} =$$

• **First proof:** by good- λ combined with hard work.

• Second proof: (it is in the same paper) by "conjugation" where appears the relevance of the theory of weights

The proof holds for any linear operator T satisfying a good weighted estimate

if z is any complex number define

$$T_z(f) = e^{zb}T(e^{-zb}f)$$

Then, a computation gives

$$[b,T](f) = \frac{d}{dz} T_z(f)|_{z=0} =$$
$$= \frac{1}{2\pi i} \int_{|z|=r} \frac{T_z(f)}{z^2} dz \qquad r > 0$$

• **First proof:** by good- λ combined with hard work.

• Second proof: (it is in the same paper) by "conjugation" where appears the relevance of the theory of weights

The proof holds for any linear operator T satisfying a good weighted estimate

if z is any complex number define

$$T_z(f) = e^{zb}T(e^{-zb}f)$$

Then, a computation gives

$$[b,T](f) = \frac{d}{dz}T_{z}(f)|_{z=0} =$$
$$= \frac{1}{2\pi i} \int_{|z|=r} \frac{T_{z}(f)}{z^{2}} dz \qquad r > 0$$

by the Cauchy integral theorem.

Now, by Minkowski's inequality (since p > 1!)

Now, by Minkowski's inequality (since p > 1!)

$$|[b,T](f)||_{L^{p}(\mathbb{R}^{n})} \leq Cr^{-2} \int_{|z|=r} ||T_{z}(f)||_{L^{p}(\mathbb{R}^{n})} |dz| \qquad r > 0$$

Now, by Minkowski's inequality (since p > 1!)

$$|[b,T](f)||_{L^{p}(\mathbb{R}^{n})} \leq Cr^{-2} \int_{|z|=r} ||T_{z}(f)||_{L^{p}(\mathbb{R}^{n})} |dz| \qquad r > 0$$

We know look at the norm inside $||T_z(f)||_{L^p}$:

$$\|T_z(f)\|_{L^p(\mathbb{R}^n)} = \|T(e^{-zb}f)\|_{L^p(e^{p\mathsf{bRez}})}.$$

Now, by Minkowski's inequality (since p > 1!)

$$|[b,T](f)||_{L^{p}(\mathbb{R}^{n})} \leq Cr^{-2} \int_{|z|=r} ||T_{z}(f)||_{L^{p}(\mathbb{R}^{n})} |dz| \qquad r > 0$$

We know look at the norm inside $||T_z(f)||_{L^p}$:

$$\|T_z(f)\|_{L^p(\mathbb{R}^n)} = \|T(e^{-zb}f)\|_{L^p(e^{p\mathsf{bRez}})}.$$

This is a weighted norm inequality

Now, by Minkowski's inequality (since p > 1!)

$$|[b,T](f)||_{L^{p}(\mathbb{R}^{n})} \leq Cr^{-2} \int_{|z|=r} ||T_{z}(f)||_{L^{p}(\mathbb{R}^{n})} |dz| \qquad r > 0$$

We know look at the norm inside $||T_z(f)||_{L^p}$:

$$\|T_z(f)\|_{L^p(\mathbb{R}^n)} = \|T(e^{-zb}f)\|_{L^p(e^{p\mathsf{bRez}})}.$$

This is a weighted norm inequality

We need **uniform** bounds on *z*.

Now, by Minkowski's inequality (since p > 1!)

$$|[b,T](f)||_{L^{p}(\mathbb{R}^{n})} \leq Cr^{-2} \int_{|z|=r} ||T_{z}(f)||_{L^{p}(\mathbb{R}^{n})} |dz| \qquad r > 0$$

We know look at the norm inside $||T_z(f)||_{L^p}$:

$$\|T_z(f)\|_{L^p(\mathbb{R}^n)} = \|T(e^{-zb}f)\|_{L^p(e^{p\mathsf{bRez}})}.$$

This is a weighted norm inequality

We need **uniform** bounds on *z*.

classical relationship between BMO and the A_p class of weights:

Now, by Minkowski's inequality (since p > 1!)

$$|[b,T](f)||_{L^{p}(\mathbb{R}^{n})} \leq Cr^{-2} \int_{|z|=r} ||T_{z}(f)||_{L^{p}(\mathbb{R}^{n})} |dz| \qquad r > 0$$

We know look at the norm inside $||T_z(f)||_{L^p}$:

$$\|T_z(f)\|_{L^p(\mathbb{R}^n)} = \|T(e^{-zb}f)\|_{L^p(e^{p\mathsf{bRez}})}.$$

This is a weighted norm inequality

We need **uniform** bounds on *z*.

classical relationship between BMO and the A_p class of weights:

If $b \in BMO$ there is an small positive number δ s.t.
Proof 2

Now, by Minkowski's inequality (since p > 1!)

$$|[b,T](f)||_{L^{p}(\mathbb{R}^{n})} \leq Cr^{-2} \int_{|z|=r} ||T_{z}(f)||_{L^{p}(\mathbb{R}^{n})} |dz| \qquad r > 0$$

We know look at the norm inside $||T_z(f)||_{L^p}$:

$$\|T_z(f)\|_{L^p(\mathbb{R}^n)} = \|T(e^{-zb}f)\|_{L^p(e^{p\mathsf{bRez}})}.$$

This is a weighted norm inequality

We need **uniform** bounds on *z*.

classical relationship between BMO and the A_p class of weights:

If $b \in BMO$ there is an small positive number δ s.t.

 $e^{tb} \in A_p, \qquad |t| < \delta$

Recall the definition of A_p

Recall the definition of A_p

$$[w]_{A_p} = \sup_{Q} \left(\frac{1}{|Q|} \int_{Q} w \, dx \right) \left(\frac{1}{|Q|} \int_{Q} w^{\frac{-1}{p-1}} \, dx \right)^{p-1} < \infty$$

Recall the definition of A_p

$$[w]_{A_p} = \sup_{Q} \left(\frac{1}{|Q|} \int_{Q} w \, dx \right) \left(\frac{1}{|Q|} \int_{Q} w^{\frac{-1}{p-1}} \, dx \right)^{p-1} < \infty$$

• The definition of A_{∞} :

Recall the definition of A_p

$$[w]_{A_p} = \sup_{Q} \left(\frac{1}{|Q|} \int_{Q} w \, dx \right) \left(\frac{1}{|Q|} \int_{Q} w^{\frac{-1}{p-1}} \, dx \right)^{p-1} < \infty$$

• The definition of A_{∞} :

$$A_{\infty} = \cup_{p \ge 1} A_p$$

Recall the definition of A_p

$$[w]_{A_p} = \sup_{Q} \left(\frac{1}{|Q|} \int_{Q} w \, dx \right) \left(\frac{1}{|Q|} \int_{Q} w^{\frac{-1}{p-1}} \, dx \right)^{p-1} < \infty$$

• The definition of A_{∞} :

$$A_{\infty} = \cup_{p \ge 1} A_p$$

• The quantitave A_{∞} constant

Recall the definition of A_p

$$[w]_{A_p} = \sup_{Q} \left(\frac{1}{|Q|} \int_{Q} w \, dx \right) \left(\frac{1}{|Q|} \int_{Q} w^{\frac{-1}{p-1}} \, dx \right)^{p-1} < \infty$$

• The definition of A_{∞} :

$$A_{\infty} = \cup_{p \ge 1} A_p$$

• The quantitave A_{∞} constant

$$[\sigma]_{A_{\infty}} = \sup_{Q} \frac{1}{\sigma(Q)} \int_{Q} M(\sigma \chi_{Q}) \, dx$$

Recall the definition of A_p

$$[w]_{A_p} = \sup_{Q} \left(\frac{1}{|Q|} \int_{Q} w \, dx \right) \left(\frac{1}{|Q|} \int_{Q} w^{\frac{-1}{p-1}} \, dx \right)^{p-1} < \infty$$

• The definition of A_{∞} :

$$A_{\infty} = \cup_{p \ge 1} A_p$$

• The quantitave A_{∞} constant

$$[\sigma]_{A_{\infty}} = \sup_{Q} \frac{1}{\sigma(Q)} \int_{Q} M(\sigma \chi_{Q}) \, dx$$

The Fujii-Wilson constant.

• Recall the Hardy-Littlewood maximal function

• Recall the Hardy-Littlewood maximal function

$$Mf(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_Q |f(y)| \, dy$$

• Recall the Hardy-Littlewood maximal function

$$Mf(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_Q |f(y)| \, dy$$

Theorem Let 1 , then

$$M: L^p(w) \longrightarrow L^p(w) \iff w \in A_p$$

• Recall the Hardy-Littlewood maximal function

$$Mf(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_Q |f(y)| \, dy$$

Theorem Let 1 , then

$$M: L^p(w) \longrightarrow L^p(w) \quad \Longleftrightarrow \quad w \in A_p$$

Furthermore,

$$\|M\|_{L^p(w)} \le c_{p,n} [w]_{A_p}^{\frac{1}{p-1}}$$

with sharp exponent $\frac{1}{p-1}$ which cannot be replaced by $\frac{1}{p-1} - \epsilon$

• Recall the Hardy-Littlewood maximal function

$$Mf(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_Q |f(y)| \, dy$$

Theorem Let 1 , then

$$M: L^p(w) \longrightarrow L^p(w) \quad \Longleftrightarrow \quad w \in A_p$$

Furthermore,

$$\|M\|_{L^p(w)} \le c_{p,n} [w]_{A_p}^{\frac{1}{p-1}}$$

with sharp exponent $\frac{1}{p-1}$ which cannot be replaced by $\frac{1}{p-1} - \epsilon$

• There is no need to find an explicit example, the sharpness of the exponent is due to the following fact:

• Recall the Hardy-Littlewood maximal function

$$Mf(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_Q |f(y)| \, dy$$

Theorem Let 1 , then

$$M: L^p(w) \longrightarrow L^p(w) \quad \Longleftrightarrow \quad w \in A_p$$

Furthermore,

$$||M||_{L^p(w)} \le c_{p,n} [w]_{A_p}^{\frac{1}{p-1}}$$

with sharp exponent $\frac{1}{p-1}$ which cannot be replaced by $\frac{1}{p-1} - \epsilon$

• There is no need to find an explicit example, the sharpness of the exponent is due to the following fact:

$$\|M\|_{L^p(\mathbb{R}^n)} \approx \frac{1}{p-1} \qquad p \to 1$$

• Recall the Hardy-Littlewood maximal function

$$Mf(x) = \sup_{x \in Q} \frac{1}{|Q|} \int_Q |f(y)| \, dy$$

Theorem Let 1 , then

$$M: L^p(w) \longrightarrow L^p(w) \quad \Longleftrightarrow \quad w \in A_p$$

Furthermore,

$$\|M\|_{L^p(w)} \le c_{p,n} [w]_{A_p}^{\frac{1}{p-1}}$$

with sharp exponent $\frac{1}{p-1}$ which cannot be replaced by $\frac{1}{p-1} - \epsilon$

• There is no need to find an explicit example, the sharpness of the exponent is due to the following fact:

$$\|M\|_{L^p(\mathbb{R}^n)} \approx \frac{1}{p-1} \qquad p \to 1$$

Joint work with T. Luque and E. Rela.

• Third proof: (due to J. L. Strömberg)

• Third proof: (due to J. L. Strömberg)

Works only for Calderón-Zygmund operators *T*:

• Third proof: (due to J. L. Strömberg)

Works only for Calderón-Zygmund operators T:

based on the following pointwise estimate:

• Third proof: (due to J. L. Strömberg)

Works only for Calderón-Zygmund operators T:

based on the following pointwise estimate:

 $M^{\#}([b,T]f)(x) \leq c \|b\|_{BMO} \left(M_{rq}(f)(x) + M_r(Tf)(x) \right) \qquad r,q > 1.$

• Third proof: (due to J. L. Strömberg)

Works only for Calderón-Zygmund operators T:

based on the following pointwise estimate:

 $M^{\#}([b,T]f)(x) \leq c \|b\|_{BMO} \left(M_{rq}(f)(x) + M_r(Tf)(x) \right) \qquad r,q > 1.$

This result recovers the CRW commutator L^p theorem with a bonus:

• Third proof: (due to J. L. Strömberg)

Works only for Calderón-Zygmund operators *T*:

based on the following pointwise estimate:

 $M^{\#}([b,T]f)(x) \leq c \|b\|_{BMO} \left(M_{rq}(f)(x) + M_r(Tf)(x) \right) \qquad r,q > 1.$

This result recovers the CRW commutator L^p theorem with a bonus:

Let p > 1 and $w \in A_p$. Then if $b \in BMO$ $[b,T] : L^p(w) \to L^p(w)$

• Third proof: (due to J. L. Strömberg)

Works only for Calderón-Zygmund operators T:

based on the following pointwise estimate:

 $M^{\#}([b,T]f)(x) \leq c \|b\|_{BMO} \left(M_{rq}(f)(x) + M_r(Tf)(x) \right) \qquad r,q > 1.$

This result recovers the CRW commutator L^p theorem with a bonus:

Let p > 1 and $w \in A_p$. Then if $b \in BMO$

 $[b,T]: L^p(w) \to L^p(w)$

Fefferman-Stein inequality must be used

• Third proof: (due to J. L. Strömberg)

Works only for Calderón-Zygmund operators T:

based on the following pointwise estimate:

 $M^{\#}([b,T]f)(x) \leq c \|b\|_{BMO} \left(M_{rq}(f)(x) + M_r(Tf)(x) \right) \qquad r,q > 1.$

This result recovers the CRW commutator L^p theorem with a bonus:

Let p > 1 and $w \in A_p$. Then if $b \in BMO$

 $[b,T]: L^p(w) \to L^p(w)$

Fefferman-Stein inequality must be used

$$\|M(f)\|_{L^{p}(w)} \leq c \|M^{\#}(f)\|_{L^{p}(w)}$$

• Third proof: (due to J. L. Strömberg)

Works only for Calderón-Zygmund operators T:

based on the following pointwise estimate:

 $M^{\#}([b,T]f)(x) \leq c \|b\|_{BMO} \left(M_{rq}(f)(x) + M_r(Tf)(x) \right) \qquad r,q > 1.$

This result recovers the CRW commutator L^p theorem with a bonus:

Let p > 1 and $w \in A_p$. Then if $b \in BMO$

 $[b,T]: L^p(w) \to L^p(w)$

Fefferman-Stein inequality must be used

$$||M(f)||_{L^{p}(w)} \le c ||M^{\#}(f)||_{L^{p}(w)}$$

together with Muckenhoupt's theorem and the R.H.I.'s property of A_p weights.

Two main ideas I want to convey throughout the talk:

Two main ideas I want to convey throughout the talk:

• These commutators are **NOT** Calderón-Zygmund Operators

Two main ideas I want to convey throughout the talk:

- These commutators are **NOT** Calderón-Zygmund Operators
- the **commutators become more singular** as k increases.

Two main ideas I want to convey throughout the talk:

- These commutators are **NOT** Calderón-Zygmund Operators
- the **commutators become more singular** as k increases.
- Hardy endpoint?

Two main ideas I want to convey throughout the talk:

- These commutators are **NOT** Calderón-Zygmund Operators
- the **commutators become more singular** as k increases.
- Hardy endpoint?

• The first result indicating that these commutators are different from the standard singular integrals is due **M. Paluszyński** in his PhD thesis, 1992:

Two main ideas I want to convey throughout the talk:

- These commutators are **NOT** Calderón-Zygmund Operators
- the **commutators become more singular** as k increases.
- Hardy endpoint?

• The first result indicating that these commutators are different from the standard singular integrals is due **M. Paluszyński** in his PhD thesis, 1992:

Recall that any singular integral operator T satisfies

 $T: H^1(\mathbb{R}^n) \to L^1(\mathbb{R}^n)$

Two main ideas I want to convey throughout the talk:

- These commutators are **NOT** Calderón-Zygmund Operators
- the **commutators become more singular** as k increases.
- Hardy endpoint?

• The first result indicating that these commutators are different from the standard singular integrals is due **M. Paluszyński** in his PhD thesis, 1992: Recall that any singular integral operator T satisfies

$$T: H^1(\mathbb{R}^n) \to L^1(\mathbb{R}^n)$$

Paluszyński proved that the corresponding result

 $[b,H]: H^1(\mathbb{R}^n) \to L^1(\mathbb{R}^n)$

Two main ideas I want to convey throughout the talk:

- These commutators are **NOT** Calderón-Zygmund Operators
- the **commutators become more singular** as k increases.
- Hardy endpoint?

• The first result indicating that these commutators are different from the standard singular integrals is due **M. Paluszyński** in his PhD thesis, 1992: Recall that any singular integral operator T satisfies

$$T: H^1(\mathbb{R}^n) \to L^1(\mathbb{R}^n)$$

Paluszyński proved that the corresponding result

$$[b,H]: H^1(\mathbb{R}^n) \to L^1(\mathbb{R}^n)$$

is **false** when b is a BMO function.

The LlogL estimate

• weak type?
• weak type?

 \cdot A natural question within the Calderón-Zygmund is whether these commutators satisfy a weak type (1, 1) inequality, namely

• weak type?

 \cdot A natural question within the Calderón-Zygmund is whether these commutators satisfy a weak type (1, 1) inequality, namely

 $[b,T]: L^{1,\infty}(\mathbb{R}^n) \to L^1(\mathbb{R}^n)$

• weak type?

 \cdot A natural question within the Calderón-Zygmund is whether these commutators satisfy a weak type (1, 1) inequality, namely

$$[b,T]: L^{1,\infty}(\mathbb{R}^n) \to L^1(\mathbb{R}^n)$$

· In general this is **NOT TRUE**

• weak type?

 \cdot A natural question within the Calderón-Zygmund is whether these commutators satisfy a weak type (1, 1) inequality, namely

$$[b,T]: L^{1,\infty}(\mathbb{R}^n) \to L^1(\mathbb{R}^n)$$

· In general this is **NOT TRUE**

· What is the right endpoint?

• weak type?

 \cdot A natural question within the Calderón-Zygmund is whether these commutators satisfy a weak type (1, 1) inequality, namely

$$[b,T]: L^{1,\infty}(\mathbb{R}^n) \to L^1(\mathbb{R}^n)$$

· In general this is **NOT TRUE**

· What is the right endpoint?

Let $b \in BMO$, there exists c > 0 such that $|\{y \in \mathbb{R}^n : |[b,T]f(y)| > \lambda\}| \le c \int_{\mathbb{R}^n} \Phi(\frac{|f(x)|}{\lambda}) dx \qquad \lambda > 0$ where $\Phi(t) = t(1 + \log^+ t)$.

• weak type?

 \cdot A natural question within the Calderón-Zygmund is whether these commutators satisfy a weak type (1, 1) inequality, namely

$$[b,T]: L^{1,\infty}(\mathbb{R}^n) \to L^1(\mathbb{R}^n)$$

· In general this is **NOT TRUE**

· What is the right endpoint?

Let $b \in BMO$, there exists c > 0 such that $|\{y \in \mathbb{R}^n : |[b,T]f(y)| > \lambda\}| \le c \int_{\mathbb{R}^n} \Phi(\frac{|f(x)|}{\lambda}) dx \qquad \lambda > 0$ where $\Phi(t) = t(1 + \log^+ t)$.

Can interpolate with these kind of estimates.

• A second question is what is the right maximal operator "controlling" these commutators.

• A second question is what is the right maximal operator "controlling" these commutators.

It was shown in these papers that these commutators are not the "controlled" by the Hardy-Littlewood maximal M

• A second question is what is the right maximal operator "controlling" these commutators.

It was shown in these papers that these commutators are not the "controlled" by the Hardy-Littlewood maximal M

instead: $M^2 = M \circ M$ is the right one.

• A second question is what is the right maximal operator "controlling" these commutators.

It was shown in these papers that these commutators are not the "controlled" by the Hardy-Littlewood maximal M

instead: $M^2 = M \circ M$ is the right one.

• We observe that M^2 is not of weak type one and is of LlogL type

• A second question is what is the right maximal operator "controlling" these commutators.

It was shown in these papers that these commutators are not the "controlled" by the Hardy-Littlewood maximal M

instead: $M^2 = M \circ M$ is the right one.

• We observe that M^2 is not of weak type one and is of LlogL type

Theorem

$$\begin{split} \sup_{t>0} \frac{1}{\Phi(\frac{1}{t})} |\{y \in \mathbb{R}^n : |[b,T]f(y)| > t\}| \\ \leq c \sup_{t>0} \frac{1}{\Phi(\frac{1}{t})} |\{y \in \mathbb{R}^n : M^2f(y) > t\}| \end{split}$$

• A second question is what is the right maximal operator "controlling" these commutators.

It was shown in these papers that these commutators are not the "controlled" by the Hardy-Littlewood maximal M

instead: $M^2 = M \circ M$ is the right one.

• We observe that M^2 is not of weak type one and is of LlogL type

Theorem

$$\sup_{t>0} \frac{1}{\Phi(\frac{1}{t})} |\{y \in \mathbb{R}^n : |[b,T]f(y)| > t\}|$$

$$\leq c \sup_{t>0} \frac{1}{\Phi(\frac{1}{t})} \Big| \{ y \in \mathbb{R}^n : M^2 f(y) > t \} \Big|$$

where as above $\Phi(t) = t(1 + \log^+ t)$. In fact is **false** for $\Phi(t) = t$.

It is unfortunate that the "conjugation" method above **DOES NOT WORK** to prove these estimates.

It is unfortunate that the "conjugation" method above **DOES NOT WORK** to prove these estimates.

The proof is based on the following pointwise inequality:

It is unfortunate that the "conjugation" method above **DOES NOT WORK** to prove these estimates.

The proof is based on the following pointwise inequality:

Theorem If $\epsilon > 0$, then there is a constant *c* such that $M^{\#}([1, T]) < (M(T)) + M^{2}(f))$

$$M_{\epsilon/2}^{\#}([b,T]) \le c \left(M_{\epsilon}(Tf) + M^2(f) \right)$$

It is unfortunate that the "conjugation" method above **DOES NOT WORK** to prove these estimates.

The proof is based on the following pointwise inequality:

Theorem If $\epsilon > 0$, then there is a constant c such that $M_{\epsilon/2}^{\#}([b,T]) \le c \left(M_{\epsilon}(Tf) + M^{2}(f) \right)$

Let $0 and <math>w \in A_{\infty}$, then there is a constant c such that $\|[b,T](f)\|_{L^{p}(w)} \le c \|M^{2}(f)\|_{L^{p}(w)}$

It is unfortunate that the "conjugation" method above **DOES NOT WORK** to prove these estimates.

The proof is based on the following pointwise inequality:

Theorem If $\epsilon > 0$, then there is a constant c such that $M_{\epsilon/2}^{\#}([b,T]) \le c \left(M_{\epsilon}(Tf) + M^{2}(f) \right)$

Let $0 and <math>w \in A_{\infty}$, then there is a constant c such that $\|[b,T](f)\|_{L^{p}(w)} \le c \|M^{2}(f)\|_{L^{p}(w)}$

C.P. 1995

It is unfortunate that the "conjugation" method above **DOES NOT WORK** to prove these estimates.

The proof is based on the following pointwise inequality:

Theorem If $\epsilon > 0$, then there is a constant c such that $M_{\epsilon/2}^{\#}([b,T]) \le c \left(M_{\epsilon}(Tf) + M^{2}(f) \right)$

Let $0 and <math>w \in A_{\infty}$, then there is a constant c such that $\|[b,T](f)\|_{L^{p}(w)} \le c \|M^{2}(f)\|_{L^{p}(w)}$

C.P. 1995

Is sharp, M^2 cannot be replaced by M.

Joint work with **Gladis Pradolini** \approx 2000.

Joint work with **Gladis Pradolini** \approx 2000.

We found a direct proof by means of a variant of the **Calderón-Zygmund Operators type decomposition.**

Joint work with **Gladis Pradolini** \approx 2000.

We found a direct proof by means of a variant of the **Calderón-Zygmund Operators type decomposition.**

We can even put general weights

Joint work with **Gladis Pradolini** \approx 2000.

We found a direct proof by means of a variant of the **Calderón-Zygmund Operators type decomposition.**

We can even put general weights

Theorem

There exists a positive constant *c* such that

$$w(\{x \in \mathbb{R}^n : |[b,T]f(x)| > \lambda\}) \le c_{\epsilon} \int_{\mathbb{R}^n} \Phi(\frac{|f(x)|}{\lambda}) M_{L(\log L)^{1+\epsilon}}(w)(x) dx$$

where $\Phi(t) = t(1 + \log^+ t)$.

Joint work with **Gladis Pradolini** \approx 2000.

We found a direct proof by means of a variant of the **Calderón-Zygmund Operators type decomposition.**

We can even put general weights

Theorem

There exists a positive constant c such that

$$w(\{x \in \mathbb{R}^n : |[b,T]f(x)| > \lambda\}) \le c_{\epsilon} \int_{\mathbb{R}^n} \Phi(\frac{|f(x)|}{\lambda}) M_{L(\log L)^{1+\epsilon}}(w)(x) dx$$

where $\Phi(t) = t(1 + \log^+ t)$.

compare with

Joint work with **Gladis Pradolini** \approx 2000.

We found a direct proof by means of a variant of the **Calderón-Zygmund Operators type decomposition.**

We can even put general weights

Theorem

There exists a positive constant c such that

$$w(\{x \in \mathbb{R}^n : |[b,T]f(x)| > \lambda\}) \le c_{\epsilon} \int_{\mathbb{R}^n} \Phi(\frac{|f(x)|}{\lambda}) M_{L(\log L)^{1+\epsilon}}(w)(x) dx$$

where $\Phi(t) = t(1 + \log^+ t)$.

compare with

$$\|Tf\|_{L^{1,\infty}(w)} \leq \frac{c_T}{\varepsilon} \int_{\mathbb{R}^n} |f(x)| M_{L(\log L)^{\varepsilon}}(w)(x) dx$$

Joint work with **D. Chung and C. Pereyra.**

Joint work with **D. Chung and C. Pereyra.**

Theorem Let *T* be any **LINEAR** operator such that for some $\alpha > 0$

$$||T||_{L^2(w)} \le c [w]_{A_2}^{\alpha} \qquad w \in A_2$$

Joint work with **D. Chung and C. Pereyra.**

Theorem Let *T* be any **LINEAR** operator such that for some $\alpha > 0$

$$||T||_{L^2(w)} \le c [w]_{A_2}^{\alpha} \qquad w \in A_2$$

then

Joint work with **D. Chung and C. Pereyra.**

Theorem Let *T* be any **LINEAR** operator such that for some $\alpha > 0$

$$||T||_{L^2(w)} \le c [w]^{\alpha}_{A_2} \qquad w \in A_2$$

then

$$\|[b,T]\|_{L^{2}(w)} \le c \|b\|_{BMO} [w]_{A_{2}}^{1+\alpha} \qquad w \in A_{2}, b \in BMO$$

Joint work with **D. Chung and C. Pereyra.**

Theorem Let *T* be any **LINEAR** operator such that for some $\alpha > 0$

$$||T||_{L^2(w)} \le c [w]^{\alpha}_{A_2} \qquad w \in A_2$$

then

$$\|[b,T]\|_{L^{2}(w)} \leq c \|b\|_{BMO} [w]_{A_{2}}^{1+\alpha} \qquad w \in A_{2}, b \in BMO$$

The method of proof, by sharpening the **conjugation** method T_z

Corollary If *T* is linear and satisfies $||T||_{L^2(w)} \le c [w]_{A_2}^{\alpha}$ $w \in A_2$, then

$$\|[b,T]\|_{L^{p}(w)} \leq c_{p,T} \|b\|_{BMO} [w]_{A_{p}}^{(1+\alpha)\max\{1,\frac{1}{p-1}\}} \qquad 1$$

Corollary If T is linear and satisfies $||T||_{L^2(w)} \le c [w]_{A_2}^{\alpha}$ $w \in A_2$, then

$$\|[b,T]\|_{L^{p}(w)} \leq c_{p,T} \|b\|_{BMO} [w]_{A_{p}}^{(1+\alpha) \max\{1,\frac{1}{p-1}\}} \qquad 1$$

In particular, we have the following consequence

Corollary If T is linear and satisfies $||T||_{L^2(w)} \le c [w]_{A_2}^{\alpha}$ $w \in A_2$, then

$$\|[b,T]\|_{L^{p}(w)} \leq c_{p,T} \|b\|_{BMO} [w]_{A_{p}}^{(1+\alpha)\max\{1,\frac{1}{p-1}\}} \qquad 1$$

In particular, we have the following consequence

Corollary If T is a Calderón-Zygmund Operators operator, then

$$\|[b,T]\|_{L^{p}(w)} \leq c_{p,T} \|b\|_{BMO} [w]_{A_{p}}^{2 \max\{1,\frac{1}{p-1}\}}$$

1

and the exponent is **sharp.**
$p < \infty$

The A_p theory: the extrapolation theorem

Corollary If T is linear and satisfies $||T||_{L^2(w)} \leq c [w]_{A_2}^{\alpha}$ $w \in A_2$, then

$$\|[b,T]\|_{L^p(w)} \le c_{p,T} \|b\|_{BMO} [w]_{A_p}^{(1+lpha) \max\{1,rac{1}{p-1}\}} \qquad 1 < 0$$

In particular, we have the following consequence

Corollary If T is a Calderón-Zygmund Operators operator, then

$$\|[b,T]\|_{L^{p}(w)} \leq c_{p,T} \|b\|_{BMO} [w]_{A_{p}}^{2\max\{1,\frac{1}{p-1}\}} \qquad 1$$

and the exponent is sharp.

• There is no need to find an explicit example, the sharpness of the exponent is due to the following fact:

 $p < \infty$

 $<\infty$

The A_p theory: the extrapolation theorem

Corollary If T is linear and satisfies $||T||_{L^2(w)} \leq c [w]_{A_2}^{\alpha}$ $w \in A_2$, then

$$\|[b,T]\|_{L^{p}(w)} \leq c_{p,T} \|b\|_{BMO} [w]_{A_{p}}^{(1+\alpha)\max\{1,\frac{1}{p-1}\}} \qquad 1 < 1$$

In particular, we have the following consequence

Corollary If T is a Calderón-Zygmund Operators operator, then

$$\|[b,T]\|_{L^{p}(w)} \leq c_{p,T} \|b\|_{BMO} [w]_{A_{p}}^{2\max\{1,\frac{1}{p-1}\}} \qquad 1 < p$$

and the exponent is sharp.

• There is no need to find an explicit example, the sharpness of the exponent is due to the following fact:

$$\|[b,H]\|_{L^p(\mathbb{R})} \approx rac{1}{(p-1)^2} \qquad p \to 1$$

Assume that T is any Calderón-Zygmund Operators operator.

Assume that T is any Calderón-Zygmund Operators operator.

Theorem (C.P. & T. Hytönen) $\|T\|_{L^{2}(w)} \leq c [w]_{A_{2}}^{1/2} ([w]_{A_{\infty}} + [w^{-1}]_{A_{\infty}})^{1/2}$

Assume that T is any Calderón-Zygmund Operators operator.

Theorem (C.P. & T. Hytönen) $\|T\|_{L^{2}(w)} \leq c \, [w]_{A_{2}}^{1/2} \left([w]_{A_{\infty}} + [w^{-1}]_{A_{\infty}} \right)^{1/2}$

As a consequence we have

Assume that T is any Calderón-Zygmund Operators operator.

Theorem (C.P. & T. Hytönen) $\|T\|_{L^{2}(w)} \leq c \, [w]_{A_{2}}^{1/2} \left([w]_{A_{\infty}} + [w^{-1}]_{A_{\infty}} \right)^{1/2}$

As a consequence we have

 $||T||_{L^2(w)} \le c_T [w]_{A_2}$

Assume that T is any Calderón-Zygmund Operators operator.

Theorem (C.P. & T. Hytönen) $\|T\|_{L^2(w)} \le c \, [w]_{A_2}^{1/2} ([w]_{A_\infty} + [w^{-1}]_{A_\infty})^{1/2}$

As a consequence we have

$$|T||_{L^2(w)} \le c_T \, [w]_{A_2}$$

For the commutator we have the following result

Assume that T is any Calderón-Zygmund Operators operator.

Theorem (C.P. & T. Hytönen) $\|T\|_{L^{2}(w)} \leq c \, [w]_{A_{2}}^{1/2} \left([w]_{A_{\infty}} + [w^{-1}]_{A_{\infty}} \right)^{1/2}$

As a consequence we have

$$|T||_{L^2(w)} \le c_T \, [w]_{A_2}$$

For the commutator we have the following result

Theorem (C.P. & T. Hytönen) $\|[b,T]\|_{L^2(w)} \le c [w]_{A_2}^{1/2} ([w]_{A_{\infty}} + [w^{-1}]_{A_{\infty}})^{3/2} \|b\|_{BMO}$

• As before we can recover the previous result:

• As before we can recover the previous result:

$$||[b,T]||_{L^2(w)} \le c [w]^2_{A_2} ||b||_{BMO}$$

• As before we can recover the previous result:

$$|[b,T]||_{L^2(w)} \le c [w]^2_{A_2} ||b||_{BMO}$$

• For higher order commutators we have,

• As before we can recover the previous result:

$$\|[b,T]\|_{L^2(w)} \le c [w]_{A_2}^2 \|b\|_{BMO}$$

• For higher order commutators we have,

$$\|T_b^k\|_{L^2(w)} \le c \, [w]_{A_2}^{1/2} \left([w]_{A_\infty} + [\sigma]_{A_\infty} \right)^{k+1/2} \|b\|_{BMO}^k.$$

• As before we can recover the previous result:

$$\|[b,T]\|_{L^2(w)} \le c [w]_{A_2}^2 \|b\|_{BMO}$$

• For higher order commutators we have,

$$\|T_b^k\|_{L^2(w)} \le c \, [w]_{A_2}^{1/2} \left([w]_{A_\infty} + [\sigma]_{A_\infty} \right)^{k+1/2} \|b\|_{BMO}^k.$$

• There is an A_1 type theory that I will skip.

If $w \in A_{\infty}$ satisfies a **Reverse Hölder Inequality**: for some r, c > 1

If $w \in A_{\infty}$ satisfies a **Reverse Hölder Inequality**: for some r, c > 1

$$\left(\frac{1}{|Q|}\int_{Q}w^{r}\,dx\right)^{\frac{1}{r}} \leq \frac{c}{|Q|}\int_{Q}w\,dx$$

If $w \in A_{\infty}$ satisfies a **Reverse Hölder Inequality**: for some r, c > 1

$$\left(\frac{1}{|Q|}\int_{Q}w^{r}\,dx\right)^{\frac{1}{r}} \leq \frac{c}{|Q|}\int_{Q}w\,dx$$

Theorem

Let $w \in A_{\infty}$. Then,

$$\left(\frac{1}{|Q|}\int_{Q} w^{1+\frac{1}{\tau_{n}[w]_{A_{\infty}}}}\right)^{\frac{1}{1+\frac{1}{\tau_{n}[w]_{A_{\infty}}}}} \leq \frac{2}{|Q|}\int_{Q} w$$

If $w \in A_{\infty}$ satisfies a **Reverse Hölder Inequality**: for some r, c > 1

$$\left(\frac{1}{|Q|}\int_{Q}w^{r}\,dx\right)^{\frac{1}{r}} \leq \frac{c}{|Q|}\int_{Q}w\,dx$$

Theorem

Let $w \in A_{\infty}$. Then,

$$\left(\frac{1}{|Q|}\int_{Q} w^{1+\frac{1}{\tau_{n}[w]_{A_{\infty}}}}\right)^{\frac{1}{1+\frac{1}{\tau_{n}[w]_{A_{\infty}}}}} \leq \frac{2}{|Q|}\int_{Q} w$$

linearity in $[w]_{A_{\infty}}$ is best possible.

If $w \in A_{\infty}$ satisfies a **Reverse Hölder Inequality**: for some r, c > 1

$$\left(\frac{1}{|Q|}\int_{Q}w^{r}\,dx\right)^{\frac{1}{r}} \leq \frac{c}{|Q|}\int_{Q}w\,dx$$

Theorem

Let $w \in A_{\infty}$. Then,

$$\left(\frac{1}{|Q|}\int_{Q} w^{1+\frac{1}{\tau_{n}[w]_{A_{\infty}}}}\right)^{\frac{1}{1+\frac{1}{\tau_{n}[w]_{A_{\infty}}}}} \leq \frac{2}{|Q|}\int_{Q} w$$

linearity in $[w]_{A_{\infty}}$ is best possible.

Joint work with T. Hytönen.

$$||T^*f||_{L^p(w)} \le c_{p,w} ||Mf||_{L^p(w)}$$

 $||T^*f||_{L^p(w)} \le c_{p,w} ||Mf||_{L^p(w)}$

where T^* is the maximal singular integral operator

$$T^*f(x) = \sup_{\varepsilon > 0} |T_{\varepsilon}f(x)|.$$

 $||T^*f||_{L^p(w)} \le c_{p,w} ||Mf||_{L^p(w)}$

where T^* is the maximal singular integral operator

$$T^*f(x) = \sup_{\varepsilon > 0} |T_{\varepsilon}f(x)|.$$

The proof by R. Coifman and C. Fefferman is based on the good- λ estimate:

 $||T^*f||_{L^p(w)} \le c_{p,w} ||Mf||_{L^p(w)}$

where T^* is the maximal singular integral operator

$$T^*f(x) = \sup_{\varepsilon > 0} |T_{\varepsilon}f(x)|.$$

The proof by R. Coifman and C. Fefferman is based on the good- λ estimate:

 $w(\{x \in \mathbb{R}^n : T^*f(x) > 2\lambda, Mf(x) \le \epsilon\lambda\}) \le c \epsilon^{\delta} w(\{x \in \mathbb{R}^n : T^*f(x) > \lambda\}),$ for $\lambda > 0$ and ϵ small enough.

 $||T^*f||_{L^p(w)} \le c_{p,w} ||Mf||_{L^p(w)}$

where T^* is the maximal singular integral operator

$$T^*f(x) = \sup_{\varepsilon > 0} |T_{\varepsilon}f(x)|.$$

The proof by R. Coifman and C. Fefferman is based on the good- λ estimate:

 $w(\{x \in \mathbb{R}^n : T^*f(x) > 2\lambda, Mf(x) \le \epsilon\lambda\}) \le c \epsilon^{\delta} w(\{x \in \mathbb{R}^n : T^*f(x) > \lambda\}),$ for $\lambda > 0$ and ϵ small enough.

The key point is to show that for appropriate (Whitney) cubes Q and for f such that supp $f \subset Q$ then

 $||T^*f||_{L^p(w)} \le c_{p,w} ||Mf||_{L^p(w)}$

where T^* is the maximal singular integral operator

$$T^*f(x) = \sup_{\varepsilon > 0} |T_{\varepsilon}f(x)|.$$

The proof by R. Coifman and C. Fefferman is based on the good- λ estimate:

$$w(\{x \in \mathbb{R}^n : T^*f(x) > 2\lambda, Mf(x) \le \epsilon\lambda\}) \le c \epsilon^{\delta} w(\{x \in \mathbb{R}^n : T^*f(x) > \lambda\}),$$

for $\lambda > 0$ and ϵ small enough.

The key point is to show that for appropriate (Whitney) cubes Q and for f such that supp $f \subset Q$ then

$$\frac{1}{|Q|}|\{x \in Q : T^*f(x) > 2\lambda, Mf(x) \le \epsilon\lambda\}| \le c \epsilon.$$

There is a very nice improvement by **S. Buckley** (1993) (based on previous work by R. Hunt, L. Carleson):

There is a very nice improvement by **S. Buckley** (1993) (based on previous work by R. Hunt, L. Carleson):

$$\frac{1}{|Q|}|\{x \in Q : T^*f(x) > 2\lambda, Mf(x) \le \epsilon\lambda\}| \le c e^{-c/\epsilon}$$

There is a very nice improvement by **S. Buckley** (1993) (based on previous work by R. Hunt, L. Carleson):

$$\frac{1}{|Q|}|\{x \in Q : T^*f(x) > 2\lambda, Mf(x) \le \epsilon\lambda\}| \le c e^{-c/\epsilon}$$

In 2002, G. A. Karagulyan improved this result:

There is a very nice improvement by **S. Buckley** (1993) (based on previous work by R. Hunt, L. Carleson):

$$\frac{1}{|Q|}|\{x \in Q : T^*f(x) > 2\lambda, Mf(x) \le \epsilon\lambda\}| \le c e^{-c/\epsilon}$$

In 2002, G. A. Karagulyan improved this result:

Theorem (G. A. Karagulyan, 2002) For any cube Q and any f supported on Q

$$\frac{1}{|Q|} |\{x \in Q : \frac{T^*f(x)}{Mf(x)} > t\}| \le c e^{-ct} \qquad t > 0$$

There is a very nice improvement by **S. Buckley** (1993) (based on previous work by R. Hunt, L. Carleson):

$$\frac{1}{|Q|}|\{x \in Q : T^*f(x) > 2\lambda, Mf(x) \le \epsilon\lambda\}| \le c e^{-c/\epsilon}$$

In 2002, G. A. Karagulyan improved this result:

Theorem (G. A. Karagulyan, 2002) For any cube Q and any f supported on Q

$$\frac{1}{|Q|} |\{x \in Q : \frac{T^*f(x)}{Mf(x)} > t\}| \le c e^{-ct} \qquad t > 0$$

• This can be seen as an improvement of $T: L^{\infty}_{c}(\mathbb{R}^{n}) \to BMO(\mathbb{R}^{n})$

There is a very nice improvement by **S. Buckley** (1993) (based on previous work by R. Hunt, L. Carleson):

$$\frac{1}{|Q|}|\{x \in Q : T^*f(x) > 2\lambda, Mf(x) \le \epsilon\lambda\}| \le c e^{-c/\epsilon}$$

In 2002, G. A. Karagulyan improved this result:

Theorem (G. A. Karagulyan, 2002) For any cube Q and any f supported on Q

$$\frac{1}{|Q|} |\{x \in Q : \frac{T^*f(x)}{Mf(x)} > t\}| \le c e^{-ct} \qquad t > 0$$

- This can be seen as an improvement of $T: L^{\infty}_{c}(\mathbb{R}^{n}) \to BMO(\mathbb{R}^{n})$
- Question: what about other operators?

There is a very nice improvement by **S. Buckley** (1993) (based on previous work by R. Hunt, L. Carleson):

$$\frac{1}{|Q|}|\{x \in Q : T^*f(x) > 2\lambda, Mf(x) \le \epsilon\lambda\}| \le c e^{-c/\epsilon}$$

In 2002, G. A. Karagulyan improved this result:

Theorem (G. A. Karagulyan, 2002) For any cube Q and any f supported on Q

$$\frac{1}{|Q|} |\{x \in Q : \frac{T^*f(x)}{Mf(x)} > t\}| \le c e^{-ct} \qquad t > 0$$

- This can be seen as an improvement of $T: L^{\infty}_{c}(\mathbb{R}^{n}) \to BMO(\mathbb{R}^{n})$
- Question: what about other operators?
- In particular for commutators.
Good-Lambda with an extra exponential decay.

There is a very nice improvement by **S. Buckley** (1993) (based on previous work by R. Hunt, L. Carleson):

$$\frac{1}{|Q|}|\{x \in Q : T^*f(x) > 2\lambda, Mf(x) \le \epsilon\lambda\}| \le c e^{-c/\epsilon}$$

In 2002, G. A. Karagulyan improved this result:

Theorem (G. A. Karagulyan, 2002) For any cube Q and any f supported on Q

$$\frac{1}{|Q|} |\{x \in Q : \frac{T^*f(x)}{Mf(x)} > t\}| \le c e^{-ct} \qquad t > 0$$

- This can be seen as an improvement of $T: L^{\infty}_{c}(\mathbb{R}^{n}) \to BMO(\mathbb{R}^{n})$
- Question: what about other operators?
- In particular for commutators.
- The proof by Karagulyan is not so clear.

Theorem (**C. Ortiz, C.P. and E. Rela**) Suppose that $||b||_{BMO} = 1$, then for any cube Q and for any f supported on Q there are constants c such that

$$\frac{1}{|Q|} \left| \{ x \in Q : \frac{|[b,T]f(x)|}{M^2 f(x)} > t \} \right| \le c e^{-\sqrt{ct}} \qquad t > 0$$

Theorem (**C. Ortiz, C.P. and E. Rela**) Suppose that $||b||_{BMO} = 1$, then for any cube Q and for any f supported on Q there are constants c such that

$$\frac{1}{|Q|} \left| \{ x \in Q : \frac{|[b,T]f(x)|}{M^2 f(x)} > t \} \right| \le c e^{-\sqrt{ct}} \qquad t > 0$$

• This shows that $[b,T] : L^{\infty}_{c}(\mathbb{R}^{n}) \to BMO(\mathbb{R}^{n})$ cannot be true but that

Theorem (**C. Ortiz, C.P. and E. Rela**) Suppose that $||b||_{BMO} = 1$, then for any cube Q and for any f supported on Q there are constants c such that

$$\frac{1}{|Q|} \left| \{ x \in Q : \frac{|[b,T]f(x)|}{M^2 f(x)} > t \} \right| \le c e^{-\sqrt{ct}} \qquad t > 0$$

• This shows that $[b,T]: L^{\infty}_{c}(\mathbb{R}^{n}) \to BMO(\mathbb{R}^{n})$ cannot be true but that

$$[b,T]: L_c^{\infty}(\mathbb{R}^n) \to BMO_{1/2}(\mathbb{R}^n)$$

does hold.

Theorem (**C. Ortiz, C.P. and E. Rela**) Suppose that $||b||_{BMO} = 1$, then for any cube Q and for any f supported on Q there are constants c such that

$$\frac{1}{|Q|} \left| \{ x \in Q : \frac{|[b,T]f(x)|}{M^2 f(x)} > t \} \right| \le c e^{-\sqrt{ct}} \qquad t > 0$$

• This shows that $[b,T]: L^{\infty}_{c}(\mathbb{R}^{n}) \to BMO(\mathbb{R}^{n})$ cannot be true but that

$$[b,T]: L_c^{\infty}(\mathbb{R}^n) \to BMO_{1/2}(\mathbb{R}^n)$$

does hold.

• For higher order commutators

Theorem (**C. Ortiz, C.P. and E. Rela**) Suppose that $||b||_{BMO} = 1$, then for any cube Q and for any f supported on Q there are constants c such that

$$\frac{1}{|Q|} \left| \{ x \in Q : \frac{|[b,T]f(x)|}{M^2 f(x)} > t \} \right| \le c e^{-\sqrt{ct}} \qquad t > 0$$

• This shows that $[b,T]: L^{\infty}_{c}(\mathbb{R}^{n}) \to BMO(\mathbb{R}^{n})$ cannot be true but that

$$[b,T]: L_c^{\infty}(\mathbb{R}^n) \to BMO_{1/2}(\mathbb{R}^n)$$

does hold.

• For higher order commutators

Theorem (higher order case) Idem as above

$$\frac{1}{|Q|} \left| \{ x \in Q : \frac{|T_b^k f(x)|}{M^{k+1} f(x)} > t \} \right| \le c e^{-(ct)^{1/(k+1)}} \qquad t > 0$$

• Rubio de Francia's algorithm: Building A₁ weights with good properties

• **Rubio de Francia's algorithm:** Building A₁ weights with good properties

Given $h \in L^r(\mathbb{R}^n), h \ge 0$, we define

$$R(h) = \sum_{k=0}^{\infty} \frac{1}{2^k} \frac{M^k h}{\|M\|_{L^r(\mathbb{R}^n)}^k},$$

• **Rubio de Francia's algorithm:** Building A₁ weights with good properties

Given $h \in L^r(\mathbb{R}^n), h \ge 0$, we define

$$R(h) = \sum_{k=0}^{\infty} \frac{1}{2^k} \frac{M^k h}{\|M\|_{L^r(\mathbb{R}^n)}^k},$$

1) $h \leq R(h)$

• Rubio de Francia's algorithm: Building A₁ weights with good properties

Given $h \in L^r(\mathbb{R}^n), h \ge 0$, we define

$$R(h) = \sum_{k=0}^{\infty} \frac{1}{2^k} \frac{M^k h}{\|M\|_{L^r(\mathbb{R}^n)}^k},$$
1) $h \le R(h)$

2) $\|R(h)\|_{L^r(\mathbb{R}^n)} \leq 2\|h\|_{L^r(\mathbb{R}^n)}$

• Rubio de Francia's algorithm: Building A₁ weights with good properties

Given $h \in L^r(\mathbb{R}^n), h \ge 0$, we define

$$R(h) = \sum_{k=0}^{\infty} \frac{1}{2^k} \frac{M^k h}{\|M\|_{L^r(\mathbb{R}^n)}^k},$$

< R(h)

1) $h \leq R(h)$

- 2) $||R(h)||_{L^{r}(\mathbb{R}^{n})} \leq 2||h||_{L^{r}(\mathbb{R}^{n})}$
- 3) $[R(h)]_{A_1} \le 2 \|M\|_{L^r(\mathbb{R}^n)} \approx r'$

• Rubio de Francia's algorithm: Building A₁ weights with good properties

Given $h \in L^r(\mathbb{R}^n), h \ge 0$, we define

$$R(h) = \sum_{k=0}^{\infty} \frac{1}{2^k} \frac{M^k h}{\|M\|_{L^r(\mathbb{R}^n)}^k},$$
1) $h \le R(h)$

- 2) $\|R(h)\|_{L^{r}(\mathbb{R}^{n})} \leq 2\|h\|_{L^{r}(\mathbb{R}^{n})}$
- 3) $[R(h)]_{A_1} \le 2 \|M\|_{L^r(\mathbb{R}^n)} \approx r'$
- Factorization: $[w_1 w_2^{1-p}]_{A_p} \le [w_1]_{A_1} [w_2]_{A_1}^{p-1}$

• Rubio de Francia's algorithm: Building A₁ weights with good properties

Given $h \in L^r(\mathbb{R}^n), h \ge 0$, we define

$$R(h) = \sum_{k=0}^{\infty} \frac{1}{2^{k}} \frac{M^{k}h}{\|M\|_{L^{r}(\mathbb{R}^{n})}^{k}},$$
1) $h \leq R(h)$

- 2) $\|R(h)\|_{L^r(\mathbb{R}^n)} \le 2\|h\|_{L^r(\mathbb{R}^n)}$
- 3) $[R(h)]_{A_1} \le 2 \|M\|_{L^r(\mathbb{R}^n)} \approx r'$
- Factorization: $[w_1 w_2^{1-p}]_{A_p} \le [w_1]_{A_1} [w_2]_{A_1}^{p-1}$
- Coifman-Rochberg: $[(M\mu)^{\delta}]_{A_1} \leq \frac{c_n}{1-\delta}.$

1)

Sketch of the proof I:

• Rubio de Francia's algorithm: Building A₁ weights with good properties

Given $h \in L^r(\mathbb{R}^n), h \ge 0$, we define

$$R(h) = \sum_{k=0}^{\infty} \frac{1}{2^k} \frac{M^k h}{\|M\|_{L^r(\mathbb{R}^n)}^k},$$

$$h \le R(h)$$

- 2) $||R(h)||_{L^{r}(\mathbb{R}^{n})} \leq 2||h||_{L^{r}(\mathbb{R}^{n})}$
- 3) $[R(h)]_{A_1} \le 2 \|M\|_{L^r(\mathbb{R}^n)} \approx r'$
- Factorization: $[w_1 w_2^{1-p}]_{A_p} \leq [w_1]_{A_1} [w_2]_{A_1}^{p-1}$
- Coifman-Rochberg: $[(M\mu)^{\delta}]_{A_1} \leq \frac{c_n}{1-\delta}.$
- The sharp L^1 weighted Coifman-Fefferman estimate:

 $\int_{\mathbb{R}^n} |[b,T]f| w dx \le c_{T,\|b\|_{BMO}} [w]_{A_{\infty}}^2 \int_{\mathbb{R}^n} M^2 f w dx$

$$\left| \left\{ x \in Q : \frac{|[b,T]f(x)|}{|M^2f(x)|} > t \right\} \right| \le \frac{1}{t^p} \left\| \frac{[b,T]f}{M^2f} \right\|_{L^p(Q)}^p$$

$$\left| \left\{ x \in Q : \frac{|[b,T]f(x)|}{|M^2f(x)|} > t \right\} \right| \le \frac{1}{t^p} \left\| \frac{[b,T]f}{M^2f} \right\|_{L^p(Q)}^p$$
$$= \frac{1}{t^p} \left(\int_Q \frac{|[b,T]f|}{M^2f} h \right)^p \qquad (for some \|h\|_{L^{p'}(Q)} = 1)$$

$$\begin{aligned} \left| \left\{ x \in Q : \frac{|[b,T]f(x)|}{|M^2f(x)|} > t \right\} \right| &\leq \frac{1}{t^p} \left\| \frac{[b,T]f}{M^2f} \right\|_{L^p(Q)}^p \\ &= \frac{1}{t^p} \left(\int_Q \frac{|[b,T]f|}{M^2f} h \right)^p \qquad (for some \|h\|_{L^{p'}(Q)} = 1) \\ &\leq \frac{1}{t^p} \left(\int_Q \frac{|[b,T]f|}{M^2f} R(h) \right)^p = \frac{1}{t^p} \left(\int_Q \frac{[b,T]f}{M^2f} R(h) \right)^p \end{aligned}$$

$$\begin{split} \left| \left\{ x \in Q : \frac{|[b,T]f(x)|}{|M^2f(x)|} > t \right\} \right| &\leq \frac{1}{t^p} \left\| \frac{[b,T]f}{M^2f} \right\|_{L^p(Q)}^p \\ &= \frac{1}{t^p} \left(\int_Q \frac{|[b,T]f|}{M^2f} h \right)^p \qquad (for some \|h\|_{L^{p'}(Q)} = 1) \\ &\leq \frac{1}{t^p} \left(\int_Q \frac{|[b,T]f|}{M^2f} R(h) \right)^p = \frac{1}{t^p} \left(\int_Q \frac{[b,T]f}{M^2f} R(h) \right)^p \\ &\leq \frac{1}{t^p} \left(c \, [w_f]_{A_{\infty}}^2 \int_Q \frac{M^2f}{M^2f} R(h) \right)^p \qquad (w_f = R(h)(M^2f)^{-1}) \end{split}$$

$$[R(h)(M^{2}f)^{-1}]_{A_{3}} = [R(h)(M^{2}f)^{\frac{1-3}{2}}]_{A_{3}}$$
$$\leq [R(h)]_{A_{1}}[(M^{2}f)^{\frac{1}{2}}]_{A_{1}}^{3-1} \lesssim p$$

$$[R(h)(M^{2}f)^{-1}]_{A_{3}} = [R(h)(M^{2}f)^{\frac{1-3}{2}}]_{A_{3}}$$
$$\leq [R(h)]_{A_{1}}[(M^{2}f)^{\frac{1}{2}}]_{A_{1}}^{3-1} \lesssim p$$

Then for and p > 1 to be chosen we have obtained

$$[R(h)(M^{2}f)^{-1}]_{A_{3}} = [R(h)(M^{2}f)^{\frac{1-3}{2}}]_{A_{3}}$$
$$\leq [R(h)]_{A_{1}}[(M^{2}f)^{\frac{1}{2}}]_{A_{1}}^{3-1} \lesssim p$$

Then for and p > 1 to be chosen we have obtained

$$\frac{1}{|Q|} \left| \left\{ x \in Q : \frac{|[b,T]f(x)|}{|M^2f(x)|} > t \right\} \right| \le \left(\frac{(cp)^2}{t}\right)^p$$

$$[R(h)(M^{2}f)^{-1}]_{A_{3}} = [R(h)(M^{2}f)^{\frac{1-3}{2}}]_{A_{3}}$$
$$\leq [R(h)]_{A_{1}}[(M^{2}f)^{\frac{1}{2}}]_{A_{1}}^{3-1} \lesssim p$$

Then for and p > 1 to be chosen we have obtained

$$\frac{1}{|Q|} \left| \left\{ x \in Q : \frac{|[b,T]f(x)|}{|M^2f(x)|} > t \right\} \right| \le \left(\frac{(cp)^2}{t}\right)^p$$

Then choosing $\frac{(cp)^2}{t} = \frac{1}{e}$, namely $p \approx \sqrt{t}$ we have

$$[R(h)(M^{2}f)^{-1}]_{A_{3}} = [R(h)(M^{2}f)^{\frac{1-3}{2}}]_{A_{3}}$$
$$\leq [R(h)]_{A_{1}}[(M^{2}f)^{\frac{1}{2}}]_{A_{1}}^{3-1} \lesssim p$$

Then for and p > 1 to be chosen we have obtained

$$\frac{1}{|Q|} \left| \left\{ x \in Q : \frac{|[b,T]f(x)|}{|M^2f(x)|} > t \right\} \right| \le \left(\frac{(cp)^2}{t}\right)^p$$

Then choosing $\frac{(cp)^2}{t} = \frac{1}{e}$, namely $p \approx \sqrt{t}$ we have

$$\frac{1}{|Q|} \left| \left\{ x \in Q : \frac{|[b,T]f(x)|}{|M^2f(x)|} > t \right\} \right| \le c e^{-\sqrt{ct}}$$

concluding the proof.

moltes gràcies

moltes gràcies

thank you