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The original result
Marzinkiewicz-Zygmund original result

Theorem (Marzinkiewicz-Zygmund)

Let Λn = {e
2ijπ
n+1 }nj=0 be the (n + 1)-roots of unity and let

1 < p <∞. There are constants Cp, such that

C−1
p

n

∑
λ∈Λn

|q(λ)|p ≤
∫ 2π

0
|q(eit )|p dt ≤

Cp

n

∑
λ∈Λn

|q(λ)|p

for all polynomials q ∈ Pn.

The relevant point is that Cp is independent of the degree n.
It is interesting to know what other possible sequences Λn are
possible.
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Beurling-Landau necessary conditions
An asymptotic density

Assume now that p = 2 for simplicity, and that Λn are a
collection of points with the same property as in the statement
of the theorem. Then

Theorem (Beurling-Landau)
If Λn are a sequence of finite sets with the
Marzinkiewicz-Zygmund property for q = 2, then for any
subinterval I ⊂ T we have

lim inf
n→∞

#(Λn ∩ I)
n

≥ |I|
|T|

The normalized Lebesgue measure in T is the critical Nyquist
density in this context.
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Our setting

Let M be a real algebraic variety of dimension n. M ⊂ Rm.

Let Pk be the real polynomials of degree k restricted to M. Let
µ be a measure compactly supported in M. We denote by
Nk = dim(Pk ).
We endow Pk with the norm given by L2(µ). We assume that µ
is not degenerate, i.e. µ is not supported on the the zero set of
a polynomial p 6≡ 0, otherwise we should work with a subvariety
of M.

Remaining slides: 14
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Marzinkiewicz-Zygmund sequences

Let Λ = {Λk}k ⊂ M be a sequence of finite sets of points of M.

Definition
We say that Λ is a Marzinkiewicz-Zygmund sequence if there is
a constant C > 0 such that

C−1
∑
λ∈Λk

|p(λ)|2

cλ,k
≤

∫
M
|p|2 dµ ≤ C

∑
λ∈Λk

|p(λ)|2

cλ,k
, ∀p ∈ Pk ,

with a natural normalization cλ,k .

We are interested in the geometric distribution of points in Λ.
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The normalization

The natural normalization is

cλ,k = sup
p∈Pk , ‖p‖=1

|p(λ)|2.

This can be computed as follows. Take p1, . . . ,pNk an
orthonormal basis of Pk and construct:

Kk (z,w) =
∑

j

pj(z)pj(w),

then cλ,k = Kk (λ, λ). Moreover Kk is the reproducing kernel:

p(z) =

∫
M

Kk (z,w)p(w) dµ(w), ∀p ∈ Pk
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Frames and M-Z sequences

The orthogonal projection L2(µ)→ Pk is given by the integral
kernel Kk . We denote by κλ the normalized reproducing kernel
κλ(z) = Kk (λ, z)/

√
Kk (λ, λ).

Then Λ is a M-Z sequence if and only if the normalized
reproducing kernels form a frame in Pk , i.e.:

C−1
∫

M
|p|2 dµ ≤

∑
λ∈Λk

|〈p, κλ〉|2 ≤ C
∫

M
|p|2 dµ ∀p ∈ Pk
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Two main examples

So far this is a rather abstract problem. We consider two more
concrete situations where it is more explicit:

The variety M = Rn. Let Ω be an open bounded convex set
in M and we take µ = χΩdx .

The variety M is a compact smooth manifold embedded in
Rm and µ is the induced Lebesgue measure in M.

In this two settings we can prove
If x ∈ Ω, then Kk (x , x) ' min(kn+1, kn√

d(x ,∂Ω)
).

In the case of smooth manifolds: Kk (x , x) ' kn ' Nk .
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Landau’s strategy

This is a strategy that was applied in bandlimited functions and
does not work in this context, but nevertheless the heuristics
give some insight on the problem.

If Λ is M-Z then {κλ}λ∈Λk is a frame. In particular it spans
Pk , even locally.
If κλ is well localized around λ, the number of points of Λk
in a subdomain should be bigger than the local dimension
of Pk .
The local dimension in a domain U can be interpreted as∫

U Kk (z, z)dµ.
Altogether the above points show that if Λ is M-Z then
asymptotically Λk has a density bigger than some critical
Nyquist density.

Remaining slides: 9



Landau’s strategy

This is a strategy that was applied in bandlimited functions and
does not work in this context, but nevertheless the heuristics
give some insight on the problem.

If Λ is M-Z then {κλ}λ∈Λk is a frame. In particular it spans
Pk , even locally.

If κλ is well localized around λ, the number of points of Λk
in a subdomain should be bigger than the local dimension
of Pk .
The local dimension in a domain U can be interpreted as∫

U Kk (z, z)dµ.
Altogether the above points show that if Λ is M-Z then
asymptotically Λk has a density bigger than some critical
Nyquist density.

Remaining slides: 9



Landau’s strategy

This is a strategy that was applied in bandlimited functions and
does not work in this context, but nevertheless the heuristics
give some insight on the problem.

If Λ is M-Z then {κλ}λ∈Λk is a frame. In particular it spans
Pk , even locally.
If κλ is well localized around λ, the number of points of Λk
in a subdomain should be bigger than the local dimension
of Pk .

The local dimension in a domain U can be interpreted as∫
U Kk (z, z)dµ.

Altogether the above points show that if Λ is M-Z then
asymptotically Λk has a density bigger than some critical
Nyquist density.

Remaining slides: 9



Landau’s strategy

This is a strategy that was applied in bandlimited functions and
does not work in this context, but nevertheless the heuristics
give some insight on the problem.

If Λ is M-Z then {κλ}λ∈Λk is a frame. In particular it spans
Pk , even locally.
If κλ is well localized around λ, the number of points of Λk
in a subdomain should be bigger than the local dimension
of Pk .
The local dimension in a domain U can be interpreted as∫

U Kk (z, z)dµ.

Altogether the above points show that if Λ is M-Z then
asymptotically Λk has a density bigger than some critical
Nyquist density.

Remaining slides: 9



Landau’s strategy

This is a strategy that was applied in bandlimited functions and
does not work in this context, but nevertheless the heuristics
give some insight on the problem.

If Λ is M-Z then {κλ}λ∈Λk is a frame. In particular it spans
Pk , even locally.
If κλ is well localized around λ, the number of points of Λk
in a subdomain should be bigger than the local dimension
of Pk .
The local dimension in a domain U can be interpreted as∫

U Kk (z, z)dµ.
Altogether the above points show that if Λ is M-Z then
asymptotically Λk has a density bigger than some critical
Nyquist density.

Remaining slides: 9



The Nyquist density

We try to identify which is the critical density. We can use the
following result:

Theorem (Berman, Boucksom, Witt-Nyström)
If µ is a Bernstein-Markov measure then

Kk (x , x)dµ(x)
∗
⇀ µeq.

The Bernstein-Markov condition is technical and it is satisfied
by our both main examples. The measure µeq is the equilibrium
measure.
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The equilibrium potential

The variety M can be naturally embedded as the real points of
a complex variety X . Given a compact K ⊂ M and any z ∈ X
one defines the Siciak-Zaharjuta equilibrium potential as

uK (z) = sup{ 1
deg(p)

log |p(z)| : sup
K
|p| ≤ 1.}

Then the equilibrium measure is defined as the Monge-Ampere
of uK

µeq = (i∂∂̄uK )n.

The equilibrium measure is a positive measure supported on K .
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What does µeq look like?

The measure µeq is a well-known object in pluripotential theory.
In the examples we mentioned before it is well understood.

If Ω is an open bounded convex set in M and µ = χΩdx
then

dµeq(z) ' d(z, ∂Ω)−1/2dz.

This is a result of Bedford and Taylor.

If M is a compact smooth manifold and dµ is the Lebesgue
measure then µeq ' µ.
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Main result

Theorem
If Λ is a Marzinkiewicz-Zygmund sequence in a real algebraic
affine variety M endowed with a non-degenerate measure then

lim inf
k→∞

1
Nk

∑
λ∈Λk

δλ ≥ µeq.

In particular for the two main examples, given any ball B in the
support of µ we have

lim inf
k→∞

#(Λk ∩ B)

Nk
≥ µeq(B)

µeq(M)
,

thus µeq is the Nyquist density.
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Bernstein inequality

One of the ingredients of the proof is a Bernstein type
inequality of independent interest:

Theorem
Given M ⊂ Rm be a smooth compact manifold. TFAE:

There is C > 0 such that for all polynomials p:∫
M
|∇tp|dVM ≤ C deg p

∫
M
|p|dVM .

There is a uniformly separated Λ such that∫
M
|p|2dVM .

1
kn

∑
λ∈Λk

|p(λ)|2 .
∫

M
|p|2dVM , ∀p ∈ Pk (Rm).

M is algebraic.
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The Kantorovich-Wasserstein distance

Given a compact metric space K we defines the K-W distance
between two probability measures µ and ν supported in K as

KW (µ, ν) = inf
ρ

∫∫
K×K

d(x , y)dρ(x , y),

where ρ is an admissible probability measure, i.e. the marginals
of ρ are µ and ν respectively.

Alternatively:

KW (µ, ν) = inf
ρ

∫∫
K×K

d(x , y)d |ρ|(x , y),

where ρ is an admissible complex measure, i.e. the marginals
of ρ are µ and ν respectively
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The complex transport plan

The K-W distance metrizes the weak-∗ convergence. We want
to prove that KW (bk , σk )→ 0, where bk = Kk (x , x)dµ(x) is the
Bergman measure and σk is a measure such that
σk ≤ 1

Nk

∑
λ∈Λk

δλ. Since we know already that bk
∗
⇀ µeq that

will prove the result.

The transport plan ρk that is convenient to estimate is:

ρk (x , y) =
1

Nk

∑
λ∈Λk

δλ(y)× gλ(x)
Kk (λ, x)√
Kk (λ, λ)

dµ(x),

where gλ is the dual frame to the normalized reproducing
kernels { Kk (λ,x)√

Kk (λ,λ)
}λ∈Λk
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The complex transport plan

The two marginals of ρk are
νk := 1

Nk
Kk (x , x) dµ(x)

∗
⇀ µeq

σk := 1
Nk

∑
λ∈Λk

gλ(λ)√
Kk (λ,λ)

δλ ≤ 1
Nk

∑
λ∈Λk

δλ

and

KW (νk , σk ) ≤ 1
Nk

∑
λ∈Λk

∫
d(λ, x)|gλ(x)| |Kk (λ, x)|√

Kk (λ, λ)
dµ(x).

Thus

KW 2(νk , σk ) .
1

Nk

∫∫
d2(x , y)|Kk (x , y)|2 dµ(x) dµ(y).
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An off-diagonal estimate

Given a bounded function f on M we denote by Tf be the
Toeplitz operator on Hk (M) ∩ L2(µ) with symbol f , i.e.
Tf := Πk ◦ f · where Πk denotes the orthogonal projection from
L2(M, µ) to Hk (M).

It can be easily computed:

Tr T 2
f − Tr Tf 2 =

1
2

∫
M×M

(f (x)− f (y))2 |Kk (x , y)|2 dµ(x)⊗ dµ(y)

Now, setting f := xi we observe than on Hk−1, Tf (p) = xip.
Therefore Tf 2 − T 2

f = 0 on Hk−2. Therefore:

Tr T 2
f − Tr Tf 2 = O(kn−1)

and
KW 2(νk , σk ) .

1
k
.
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