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Symplectic structures

A symplectic structure is a non-degenerate closed 2-form ω.

Non-degeneracy gives a natural isomorphism between T ∗(M) and T (M).

For every f , there is a unique vector field Xf (Hamiltonian vector field),
ιXfω = −df

Figure: Sir William Rowan Hamilton, Jürgen Moser and Hamilton’s equations.

Jürgen Moser classified symplectic structures on surfaces using the path method
associated to this formula. In this case, a symplectic form is just an area form.
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Symplectic structures in dimension 2

Theorem (Moser)
Two symplectic structures ω0 and ω1 on a compact symplectic surface
with [ω0] = [ω1] are symplectically equivalent.

Idea behind: Moser’s path method
The linear path ωt = (1− t)ω0 + tω1 is a path of symplectic structures  
(Moser’s trick)

ιXtωt = −α

with ω1 − ω0 = dα  integration of the flow of Xt given by the path
method gives the diffeomorphism.
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Higher dimensions?

Some classification schemes are possible with additional data (toric manifolds).

Theorem (Delzant)
Toric manifolds are classified by Delzant’s polytopes. More specifically, the
bijective correspondence between these two sets is given by the image of the

moment map: {toric manifolds} −→ {Delzant polytopes}
(M2n, ω,Tn, F ) −→ F (M)

µ = h

R

CP2 µ

(t1, t2) · [z0 : z1 : z2] = [z0 : eit1z1 : eit2z2]
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Moment maps in Symplectic Geometry

Definition (Symplectic case)
Let G be a compact Lie group acting symplectically on (M,ω).
The action is Hamiltonian if there exists an equivariant map µ : M → g∗

such that for each element X ∈ g,

− dµX = ιX#ω, (1)

with µX =< µ,X >.
The map µ is called the moment map.
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Why toric?
Given an integrable system F = (f1, . . . , fn) ( {fi, fj} = 0) and a compact fiber,

Theorem (Arnold-Liouville)
There exist semilocal action-angle coordinates (p1, θ1, . . . , pn, θn) such that
ω =

∑n
i=0 dpi ∧ dθi, F = (p1, . . . , pn) with linear Hamiltonian flow on the torus.

Liouville tori (left) and Bohr-Sommerfeld orbits read from the polytope (right)

Some applications:
Singular fibrations: Symplectic Morse-Bott classification (M.-Zung).

Geometric Quantization: Guillemin-Sternberg, Sniaticky, Hamilton, M.,
Solha.
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Symplectic surfaces with singularities (Radko’s surfaces)
Given an oriented surface S (compact or not) with a distinguished union of curves
Z, we want to modify the volume form on S by making it “explode” when we get
close to Z. We want this “blow up” process to be controlled.

Figure: A Radko surface

What does “controlled” mean here? We want that the 2-form looks locally
ω = 1

ydx ∧ dy (for points in Z).
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Dimension 2

(Radko) The invariants of b-symplectic structures in dimension 2 are :

Geometrical: The topology of S and the curves γi where Π vanishes.

Dynamical: The periods of the “modular vector field” along γi.

Measure: The regularized Liouville volume of S, limε→0 V
ε
h (Π) =

∫
|h|>ε ωΠ

for h a function vanishing linearly on the curves γ1, . . . , γn.

Figure: Two admissible vanishing curves (a) and (b) for Π; the ones in (b’) are
not admissible.
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Radko surfaces and their symmetries

(S2, 1
hdh ∧ dθ) ! (S2, h ∂

∂h ∧
∂
∂θ ).

We want to study generalizations of rotations on a sphere.

µ = − log |h|
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Surfaces and circle actions

Surfaces and circle actions
The only orientable compact surfaces admitting an effective action by
circles are the two sphere S2 and the 2-torus T2 and the action is
equivalent to the standard action by rotations.

In the symplectic case the standard rotation on T2 is not Hamiltonian
(only symplectic).

dθ1 ∧ dθ2( ∂

∂θ1
, ·) = dθ2.

In the b-symplectic case, the toric surfaces are either the sphere or the
torus.
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The S1-b-sphere

Example
(S2, ω = dh

h ∧ dθ), with coordinates h ∈ [−1, 1] and θ ∈ [0, 2π]. The
critical hypersurface Z is the equator, given by h = 0. For the S1-action
by rotations, the moment map is µ(h, θ) = − log |h|.

µ = − log |h|
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The S1-b-torus

Example
On (T2, ω = dθ1

sin θ1
∧ dθ2), with coordinates: θ1, θ2 ∈ [0, 2π]. The critical

hypersurface Z is the union of two disjoint circles, given by θ1 = 0 and
θ1 = π. Consider rotations in θ2 the moment map is µ : T2 −→ R2 is
given by µ(θ1, θ2) = − log

∣∣∣1+cos(θ1)
sin(θ1)

∣∣∣ .

µ
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The b-line

The b-line is constructed by gluing copies of the extended real line
R := R ∪ {±∞} together in a zig-zag pattern and R>0-valued labels
(“weights”) on the points at infinity to prescribe a smooth structure.

wt(−2)

wt(−1)

wt(−2)

wt(−1)

wt(−2)

wt(−1)

wt(−2)

wt(−1)

wt(−2)

wt(−1)

wt(−2)

wt(−1)

wt(−2)

wt(−1)

wt(−2)

wt(−1)

wt(−2)

wt(−1)

wt(−2)

wt(−1)

wt(−2)

wt(−1)

wt(−2)

wt(−1)

wt(−2)

wt(−1)

wt(−2)

wt(−1)

wt(−2)

wt(−1)

wt(−2)

wt(−1)

wt(−2)

wt(−1)

wt(−2)

wt(−1)

wt(−2)

wt(−1)

wt(−2)

wt(−1)

wt(−2)

wt(−1)

wt(0)

wt(1)

wt(0)

wt(1)

wt(0)

wt(1)

wt(0)

wt(1)

wt(0)

wt(1)

wt(0)

wt(1)

wt(0)

wt(1)

wt(0)

wt(1)

wt(0)

wt(1)

wt(0)

wt(1)

wt(0)

wt(1)

wt(0)

wt(1)

wt(0)

wt(1)

wt(0)

wt(1)

wt(0)

wt(1)

wt(0)

wt(1)

wt(0)

wt(1)

wt(0)

wt(1)

wt(0)

wt(1)

wt(0)

wt(1)

wt(0)

wt(1)

wt(2)

wt(3)

wt(2)

wt(3)

wt(2)

wt(3)

wt(2)

wt(3)

wt(2)

wt(3)

wt(2)

wt(3)

wt(2)

wt(3)

wt(2)

wt(3)

wt(2)

wt(3)

wt(2)

wt(3)

wt(2)

wt(3)

wt(2)

wt(3)

wt(2)

wt(3)

wt(2)

wt(3)

wt(2)

wt(3)

wt(2)

wt(3)

wt(2)

wt(3)

wt(2)

wt(3)

wt(2)

wt(3)

wt(2)

wt(3)

wt(2)

wt(3)

. . .. . . x̂
R

Figure: A weighted b-line with I = Z

The weights are given by the modular periods associated to each
connected component of Z.
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b-surfaces and their moment map

A toric b-surface is defined by a smooth map f : S −→ bR or
f : S −→ bS1 (a posteriori the moment map).
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Classification of toric b-surfaces

Theorem (Guillemin, M., Pires, Scott)

A toric b-symplectic surface is equivariantly b-symplectomorphic to either
(S2, Z) or (T2, Z), where Z is a collection of latitude circles.

The action is the standard rotation, and the b-symplectic form is
determined by the modular periods of the critical curves and the
regularized Liouville volume.

The weights w(a) of the codomain of the moment map are given by de
modular periods of the connected components of the critical hypersurface.
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Poisson structures

Poisson structures
A Poisson structure is a bivector field Π (i..e a section of Λ2(TM)) with
[Π,Π] = 0. It generalizes the notion of a symplectic structure.

Indeed, the Poisson manifold is locally a product of a symplectic manifold with a
Poisson manifold with vanishing Poisson structure at the point (Weinstein’s
splitting theorem).

(Pn,Π, p) ≈ (M2k, ω, p1)× (Pn−2k
0 ,Π0, p2)

This defines a symplectic foliation.
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Concerned geometries...
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b-Symplectic/b-Poisson/ log-symplectic

Definition

Let (M2n,Π) be an oriented Poisson manifold such that the map

p ∈M 7→ (Π(p))n ∈ Λ2n(TM)

is transverse to the zero section, then Z = {p ∈M |(Π(p))n = 0} is a
hypersurface called the critical hypersurface and we say that Π is a
Poisson b-structure on (M,Z).

Other singularities
It is possible to generalize this definition (M.-Planas-Scott) to consider more
general Poisson structures.

Symplectic foliation of a Poisson b-manifold
The symplectic foliation has dense symplectic leaves and codimension 2
symplectic leaves whose union is Z.
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Higher dimensions: Some compact examples.

The product of (R, πR) a Radko compact surface and a (S, π) a
compact symplectic manifold.
Take (N, π) be a regular corank 1 Poisson manifold and let X be a
Poisson vector field. the product S1 ×N with the bivector field

Π = f(θ) ∂
∂θ
∧X + π

is a b-Poisson manifold as long as,
1 the function f vanishes transversally.
2 The vector field X is transverse to the symplectic leaves of N .

We then have as many copies of N as zeroes of f .
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Poisson Geometry of the critical hypersurface

This last example is semilocally the canonical picture of a b-Poisson
structure.

1 The critical hypersurface Z has an induced regular Poisson structure
of corank 1.

2 There exists a Poisson vector field transverse to the symplectic
foliation induced on Z.

3 Given a regular corank 1 Poisson structure, there exists a semilocal
extension to a b-Poisson structure if an only if two foliated
cohomology classes of the symplectic foliation vanish.
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The singular hypersurface

Theorem (Guillemin-M.-Pires)
If L contains a compact leaf L, then Z is the mapping torus of the
symplectomorphism φ : L→ L determined by the flow of a Poisson vector
field v transverse to the symplectic foliation.
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A dual approach...
b-Poisson structures can be seen as symplectic structures modeled over a Lie
algebroid (the b-tangent bundle).
A vector field v is a b-vector field if vp ∈ TpZ for all p ∈ Z. The b-tangent
bundle bTM is defined by

Γ(U, bTM) =
{

b-vector fields
on (U,U ∩ Z)

}

b-calculus
b-calculus was developed by Richard Melrose to formalize differential calculus on
manifolds with boundary

In particular he obtained a proof of the Atiyah-Patodi-Singer index theorem.
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A dual approach...

The b-cotangent bundle bT ∗M is (bTM)∗. Sections of Λp(bT ∗M)
are b-forms, bΩp(M). The standard differential extends to

d : bΩp(M)→ bΩp+1(M)

A b-symplectic form is a closed, nondegenerate, b-form of degree 2.
This dual point of view, allows to prove a b-Darboux theorem and
semilocal forms via an adaptation of Moser’s path method because
we can play the same tricks as in the symplectic case.
For b-toric actions we allow Hamiltonian functions HX ∈ bC∞(M)
(b-forms of degree 0).

Eva Miranda (UPC) BMD2014 November 7, 2014 20 / 30



b-toric actions

Definition
An action of Tn on a b-symplectic manifold (M,ω) is a Hamiltonian
action if:

for each X ∈ t, the b-one-form ιX#ω is exact ( i.e., has a primitive
HX ∈ bC∞(M))
for any X,Y ∈ t, we have ω(X#, Y #) = 0.

The action is toric if it is effective and the dimension of the torus is half
the dimension of M .

b-moment map µ such that

< µ(p), X >= HX(p),

but we will have to allow µ(p) to take values of ±∞, so we need to extend
the pairing to accommodate that.
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From local to global....

We can reconstruct the b-Delzant polytope from the Delzant polytope on a
mapping torus via symplectic cutting in a neighbourhood of the critical
hypersurface.

This information can be recovered by doing reduction by stages: Hamiltonian
reduction of an action of Tn−1

Z and the classification of toric b-surfaces.
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The semilocal model

Fix bt∗ with wt(1) = c.
For any Delzant polytope ∆ ⊆ t∗Z with corresponding symplectic toric
manifold (X∆, ω∆, µ∆), the semilocal model of the b-symplectic
manifold is

Mlm = X∆ × S1 × R ωlm = ω∆ + c
dt

t
∧ dθ

where θ and t are the coordinates on S1 and R respectively. The S1 × TZ
action on Mlm given by (ρ, g) · (x, θ, t) = (g · x, θ + ρ, t) has moment map
µlm(x, θ, t) = (y0 = t, µ∆(x)).
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A b-Delzant theorem

Theorem (Guillemin,M.,Pires, Scott)
The maps that send a b-symplectic toric manifold to the image of its moment map

{(M,Z, ω, µ : M → bt∗)} → {b-Delzant polytopes in bt∗} (2)

and

{(M,Z, ω, µ : M → bt∗/〈N〉)} → {b-Delzant polytopes in bt∗/〈N〉} (3)

are bijections.

Toric b-manifolds can be of two types:

1 bT2 ×X (with X a toric symplectic manifold of dimension (2n− 2))
2 bS2 ×X and manifolds obtained via symplectic cutting (for instance,
mCP 2#nCP 2, with m,n ≥ 1).
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Some applications

A convexity theorem for Tk-actions on b-symplectic manifolds
(Guillemin- M.-Pires-Scott).
Applications to Quantization and localization
(Guillemin-M.-Weitsman).
An action-angle theorem for integrable systems (Kiesenhofer-M.).
A KAM theorem for b-symplectic manifolds (Kiesenhofer-M.).
Study of semitoric systems (Kiesenhofer-M.).
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Rigidity

Symplectic manifolds: Given two close symplectic actions ρ0 and ρ1 on a
compact symplectic manifold (M2n, ω) Palais theorem + Moser’s path
method  the actions are conjugated  rigidity

Poisson manifolds:

Theorem (M-Monnier-Zung)
Let µ and λ be two “close” moment maps (corresponding to a semisimple Lie
algebra action of compact type) on a compact manifold (or neighbourhood of an
invariant submanifold) then there exists a Poisson diffeomorphism such that
µ ◦ Φ = λ.
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First approach

An action gives an element in M = Hom(G,Diff(M)). Consider the additional
action,

β : Diff(M)×M 7−→M
(φ, α) 7→ φ ◦ α ◦ φ−1

α0 and α1 are conjugated if they are on the same orbit under β  If β has open
orbits  rigidity.

The tangent space to the orbit of β = 1-coboundaries of the group
cohomology with coefficients in V = V ect(M) ; the tangent space to M =
1-cocycles.

Generalized Whitehead lemma: Compact G  H1(G;V ect(M)) = 0  
tangent space to the orbit = tangent space to M.

If M is a manifold (tame Fréchet) we can apply the inverse function
theorem ( Nash-Moser) to go from the tangent space to the manifold (tame
Fréchet).
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Infinitesimal rigidity implies rigidity

In general it is hard to verify the “tame Fréchet” condition but we can apply
the method used in the proof of Nash-Moser’s theorem (Newton’s iterative
method).

This methods allows to prove several results of type infinitesimal rigidity  
rigidity.
For Hamiltonian actions on Poisson manifold we consider the
Chevalley-Eilenberg complex associated to the representation given by the
moment map.
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Infinitesimal rigidity implies rigidity

1 Assume now that µ0 : M −→ g∗ and µ1 : M −→ g∗ are close moment maps.
The difference φ = µ0 − µ1 defines a 1-cochain which is a near 1-cocycle.

2 Define Φ as the time-1-map of the Hamiltonian vector field XSt(h(φ)) with h
the homotopy operator and St is a smoothing operator.

3 Define the Newton iteration,
φd = φ1

XSt(h(ηd))

with ηd = (µ1 − µ0) ◦ φd−1. This converges to a Poisson diffeomorphism
that conjugates both actions.

Applications
The general scheme proved by Monnier-M.-Zung for SCI spaces has had other
applications to:

Generalized complex geometry, Bailey-Gualtieri.

Normal forms for submanifolds in Poisson Geometry, Crainic-Marcut.

Poisson Lie groups Esposito-M.
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