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Introduction

We study those planar domains Ω ⊂ R2 for which there exists an
extension operator T : W 1,p(Ω)→W 1,p(R2). Here the Sobolev space
W 1,p , 1 ≤ p ≤ ∞, is

W 1,p(Ω) =
{

u ∈ Lp(Ω) : ∇u ∈ Lp(Ω,R2)
}
,

where ∇u denotes the distributional gradient of u. The usual norm in
W 1,p(Ω) is ||u||W 1,p(Ω) = ||u||Lp(Ω) + ||∇u||Lp(Ω). More precisely,
T : W 1,p(Ω)→W 1,p(R2) is an extension operator if there exists a
constant C ≥ 1 so that for every u ∈W 1,p(Ω) we have

||Tu||W 1,p(R2) ≤ C ||u||W 1,p(Ω)

and Tu|Ω = u.

Notice that we are not assuming the operator T to be linear.
However, for p > 1 there always exists also a linear extension operator
provided that there exists an extension operator, see [9] and also [19].
Finally, a domain Ω ⊂ R2 is called a W 1,p-extension domain if there
exists an extension operator T : W 1,p(Ω)→W 1,p(R2).
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We prefer to use the homogeneous norm ||u||L1,p(Ω) = ||∇u||Lp(Ω).
This makes no difference for us because we only consider domains Ω
with bounded (and hence compact) boundary; for such domains one
has a bounded (linear) extension operator for the homogeneous norms
if and only for the non-homogeneous ones; see [11]. In what follows,
the norm in question is always the homogeneous one, even if we
happen to refer to it by ||u||W 1,p(Ω).
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Jointly with Tapio Rajala and Yi Zhang we have very recently
obtained the following geometric characterization of simply-connected
bounded planar W 1,p-extension domains for 1 < p < 2.

Theorem 1

Let 1 < p < 2 and let Ω ⊂ R2 be a bounded simply-connected domain.
Then Ω is a W 1,p-extension domain if and only if for all
z1, z2 ∈ R2 \ Ω there exists a curve γ ⊂ R2 \ Ω joining z1 and z2 such
that ∫

γ

dist (z , ∂Ω)1−p ds(z ) ≤ C (Ω, p)|z1 − z2|2−p . (1)

Both the necessity and sufficiency in Theorem 1 are new. Notice that
the curve γ above is allowed to touch the boundary of Ω even if the
points in question lie outside the closure of Ω. This is crucial: there
exist bounded simply-connected W 1,p-extension domains for which
R2 \ Ω has multiple components, see e.g. [4].
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When combined with earlier results, Theorem 1 essentially completes
the search for a geometric characterization for bounded
simply-connected planar W 1,p-extension domains. The unbounded
case requires extra technical work and it will be discussed elsewhere.
Theorem 1 leaves out the case p = 1 that requires additional
arguments; we will deal with it in a subsequent paper.
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The condition (1) on the complement in Theorem 1 appears also in
the characterization of W 1,q -extension domains when 2 < q <∞. For
such domains a characterization using the condition (1) in the domain
itself with the Hölder dual exponent p of q was proved in [20,
Theorem 1.2], see also earlier results [3, 14].

Theorem 2 (Shvartsman)

Let 2 < q <∞ and let Ω be a bounded simply-connected planar
domain. Then Ω is a W 1,q -extension domain if and only if for all
z1, z2 ∈ Ω there exists a rectifiable curve γ ⊂ Ω joining z1 to z2 such
that ∫

γ

dist (z , ∂Ω)
1

1−q ds(z ) ≤ C (Ω, q)|z1 − z2|
q−2
q−1 . (2)

Pekka Koskela Sobolev extension domains



Introduction

The above two theorems leave out the case p = 2. This is settled by
earlier results [6, 7, 8, 12], according to which a bounded
simply-connected domain is a W 1,2-extension domain if and only it is
a quasidisk (equivalenty, a uniform domain). Since the
complementary domain of a Jordan uniform domain is also uniform,
one rather easily concludes that a Jordan domain is a W 1,2-extension
domain if and only if the complementary domain is.

Combining our characterization in Theorem 1 with Shvartsman’s
characterization stated in Theorem 2 one easily obtains the following
duality result between the extendability of Sobolev functions from a
Jordan domain and from its complementary domain.

Corollary 3

Let 1 < p, q <∞ be Hölder dual exponents and let Ω ⊂ R2 be a
Jordan domain. Then Ω is a W 1,p-extension domain if and only if
R2 \ Ω̄ is a W 1,q -extension domain.
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Corollary 4

Let Ω ⊂ R2 be a bounded, simply-connected W 1,p-extension domain,
where 1 < p ≤ 2. Then there is q > p so that Ω is a W 1,s-extension
domain for all 1 < s < q .

This follows from the fact that (1) for 1 < p < 2 implies the similar
inequality for all 1 < s < p + ε. The case of smaller s is essentially
just Hölder’s inequality, see [17], while the improvement to larger
exponents follows from the proof of Proposition 2.6 in [20]; consider a
minimizer for (1) in R2 \ Ω. Again, in the case p = 2, Corollary 4 was
already known to hold: one then has extendability for all 1 < s <∞.
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Combining Corollary 4 with results from [14] and [20] we obtain an
open-ended property.

Corollary 5

Let Ω ⊂ R2 be a bounded, simply-connected W 1,p-extension domain,
where 1 < p <∞. Then the set of all 1 < s <∞ for which Ω is a
W 1,s-extension domain is an open interval.

Actually, the open interval above can only be one of 1 < s <∞,
1 < s < q with q ≤ 2, or q < s <∞ with q ≥ 2.
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Let us finally comment on some earlier partial results related to
Theorem 1. First of all, it is well known that bounded
simply-connected W 1,p-extension domains are John domains when
1 ≤ p < 2, see [7, 18] and references therein. However, there exist
John domains that fail to be extension domains and, even after
Theorem 1 there is no interior geometric characterization available for
this range of exponents.

Secondly, in [15] it was shown that the complement of a bounded
simply-connected W 1,1-extension domain is quasiconvex. This was
obtained as a corollary to a characterization of bounded
simply-connected BV -extension domains. Recall that a set E ⊂ R2 is
called quasiconvex if there exists a constant C ≥ 1 such that any pair
of points z1, z2 ∈ E can be connected to each other with a rectifiable
curve γ ⊂ E whose length satisfies `(γ) ≤ C |z1 − z2|. In [15] it was
conjectured that quasiconvexity of the complement holds for every
W 1,p-extension domain when 1 ≤ p ≤ 2. This conjecture follows from
our Theorem 1, but again, quasiconvexity is a weaker condition than
our geometric characterization.
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Both the necessity and sufficiency are first proved for the
approximating Jordan domains Ωn obtained via ϕ(B(0, 1− 1/n)),
where ϕ : D→ Ω is the conformal map (normalized so that ϕ(0) is the
John center of Ω).

For necessity, one needs to know that the domains Ωn are
Sobolev-extension domains with a uniform bound on the norms of the
extension operators. For this, one uses the fact that Ω is John and ϕ
is quasisymmetric with respect to the internal metrics. Then Ω,Ωn

are uniform with respect to the internal metrics, and a variant of the
extension method due to Jones allowss one to extend from Ωn to Ω.
For Ωn , one then constructs suitable test-functions.
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For sufficiency, one first proves that the complement of each Ωn

satisfies (1), uniformly in n.

For this, one notices that the complement of Ω is quasiconvex, whence
Ω is John and quasisymmetry with respect to the internal metrics can
be applied.
Via a compactness argument, one is then left to construct an
extension operator for Ωn .
What one wants is to “reflect” Whitney cubes to Whitney cubes.
Given a Whitney cube of the complementary domain of size no more
than the diameter of our domain, the fact that Ωn is John would give
us a cube of comparable size at distance comparable to the size of our
given Whitney cube.
This is not the way to construct the extension.
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Fix a conformal map ϕ̃ from the complementary domain to the
complementary domain of the unit disk. Given a Whitney cube Q̃ of
the complementary domain, map it via ϕ̃. This gives us a shadow of
on the circle, obtained via hyperbolic rays from infinity. Map this
shadow back to the boundary of Ωn via our complementary conformal
map.

Assign a Whitney cube of Ωn to this shadow (via the interior
conformal map) so that the internal shadow via hyperbolic rays is
comparable to the given shadow.
Pick a partition of unity and use averages from the “reflected cubes”.
Done?
NO! A reflected cube can be much larger than the original cube, and
many cubes can correspond to the same reflected cube.
Use the construction to “locate” the problematic cubes and (1) to
control them.
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