Nonlinear Beltrami equations and quasiconformal flows

Albert Clop

Departament de Matemàtiques
Universitat Autònoma de Barcelona

Nov 7th, 2014

Based in joint works with

Kari Astala (University of Helsinki)
Daniel Faraco (Universidad Autónoma de Madrid) Jarmo Jääskeläinen (University of Helsinki) Laszlo Székelyhidi (University of Leipzig)

We say that $f: \Omega \subset \mathbb{C} \rightarrow \mathbb{C}$ is K-quasiregular if

* $f \in W_{\text {loc }}^{1,2}(\Omega ; \mathbb{C})$, and
* f satisfies the distortion inequality with constant K,

$$
|D f(z)|^{2} \leq K J(z, f) \quad \text { a.e. }
$$

We say that $f: \Omega \subset \mathbb{C} \rightarrow \mathbb{C}$ is K-quasiregular if

* $f \in W_{\text {loc }}^{1,2}(\Omega ; \mathbb{C})$, and
* f satisfies the distortion inequality with constant K,

$$
|D f(z)|^{2} \leq K J(z, f) \quad \text { a.e. }
$$

Equivalently,

$$
\left|\partial_{\bar{z}} f(z)\right| \leq k\left|\partial_{z} f(z)\right| \quad \text { a.e., with } k=\frac{K-1}{K+1}
$$

or even

$$
\partial_{\bar{z}} f(z)=\mu(z) \partial_{z} f(z) \quad \text { a.e., for some } \mu:|\mu(z)| \leq k .
$$

We say that $f: \Omega \subset \mathbb{C} \rightarrow \mathbb{C}$ is K-quasiregular if

* $f \in W_{\text {loc }}^{1,2}(\Omega ; \mathbb{C})$, and
* f satisfies the distortion inequality with constant K,

$$
|D f(z)|^{2} \leq K J(z, f) \quad \text { a.e. }
$$

Equivalently,

$$
\left|\partial_{\bar{z}} f(z)\right| \leq k\left|\partial_{z} f(z)\right| \quad \text { a.e., with } k=\frac{K-1}{K+1}
$$

or even

$$
\partial_{\bar{z}} f(z)=\mu(z) \partial_{z} f(z) \quad \text { a.e., for some } \mu:|\mu(z)| \leq k
$$

We say that f is K-quasiconformal if it is a $K Q R$ homeo.

We say that $f: \Omega \subset \mathbb{C} \rightarrow \mathbb{C}$ is K-quasiregular if

* $f \in W_{\text {loc }}^{1,2}(\Omega ; \mathbb{C})$, and
* f satisfies the distortion inequality with constant K,

$$
|D f(z)|^{2} \leq K J(z, f) \quad \text { a.e. }
$$

Equivalently,

$$
\left|\partial_{\bar{z}} f(z)\right| \leq k\left|\partial_{z} f(z)\right| \quad \text { a.e., with } k=\frac{K-1}{K+1}
$$

or even

$$
\partial_{\bar{z}} f(z)=\mu(z) \partial_{z} f(z) \quad \text { a.e., for some } \mu:|\mu(z)| \leq k
$$

We say that f is K-quasiconformal if it is a $K Q R$ homeo.

$$
K=1 \Leftrightarrow k=0 \Leftrightarrow \mu \equiv 0 \Rightarrow\left\{\begin{array}{l}
K Q R=\{\text { holomorphic }\} \\
K Q C=\{\text { conformal }\}
\end{array}\right.
$$

Measurable Riemann Mapping Theorem.
Given $a \neq 0, \mu \in L^{\infty}(\mathbb{C})$ with $\|\mu\|_{\infty} \leq k<1$,
$\exists!\phi_{a}: \mathbb{C} \rightarrow \mathbb{C}$ such that $\left\{\begin{array}{l}\phi_{a} \text { is } K Q C \\ \partial_{\bar{z}} \phi_{a}=\mu \partial_{z} \phi_{a} \leftarrow \text { Beltrami equation } \\ \phi_{a}(0)=0, \phi_{a}(1)=a\end{array}\right.$

Measurable Riemann Mapping Theorem.
Given $a \neq 0, \mu \in L^{\infty}(\mathbb{C})$ with $\|\mu\|_{\infty} \leq k<1$,
$\exists!\phi_{a}: \mathbb{C} \rightarrow \mathbb{C}$ such that $\left\{\begin{array}{l}\phi_{a} \text { is } K Q C \\ \partial_{\bar{z}} \phi_{a}=\mu \partial_{z} \phi_{a} \leftarrow \text { Beltrami equation } \\ \phi_{a}(0)=0, \phi_{a}(1)=a\end{array}\right.$
Indeed,

$$
\phi_{a}=a \phi_{1}
$$

Measurable Riemann Mapping Theorem.

Given $a \neq 0, \mu \in L^{\infty}(\mathbb{C})$ with $\|\mu\|_{\infty} \leq k<1$,
$\exists!\phi_{a}: \mathbb{C} \rightarrow \mathbb{C}$ such that $\left\{\begin{array}{l}\phi_{a} \text { is } K Q C \\ \partial_{\bar{z}} \phi_{a}=\mu \partial_{z} \phi_{a} \leftarrow \text { Beltrami equation } \\ \phi_{a}(0)=0, \phi_{a}(1)=a\end{array}\right.$
Indeed,

$$
\phi_{a}=a \phi_{1}
$$

Therefore μ generates a set $\mathcal{F}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}}$ such that
(1) $\phi_{0} \equiv 0$
(2) if $a \neq 0$ then $\phi_{a} \in K Q C, 0 \mapsto 0,1 \mapsto a$
(3) \mathcal{F} is stable under \mathbb{C}-linear combinations

Fact: This also works conversely:

$$
\begin{aligned}
\mathcal{F}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}} \text { as before } & \rightsquigarrow \phi_{1} \\
& \rightsquigarrow \mu=\mu(z)=\frac{\partial_{\bar{z}} \phi_{1}(z)}{\partial_{z} \phi_{1}(z)} .
\end{aligned}
$$

Fact: This also works conversely:

$$
\begin{aligned}
\mathcal{F}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}} \text { as before } & \rightsquigarrow \phi_{1} \\
& \rightsquigarrow \quad \mu=\mu(z)=\frac{\partial_{\bar{z}} \phi_{1}(z)}{\partial_{z} \phi_{1}(z)} .
\end{aligned}
$$

Main reason: $\phi K Q C \Rightarrow \partial_{z} \phi \neq 0$ almost everywhere

Fact: This also works conversely:

$$
\begin{aligned}
\mathcal{F}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}} \text { as before } & \rightsquigarrow \phi_{1} \\
& \rightsquigarrow \mu=\mu(z)=\frac{\partial_{\bar{z}} \phi_{1}(z)}{\partial_{z} \phi_{1}(z)} .
\end{aligned}
$$

Main reason: $\phi K Q C \Rightarrow \partial_{z} \phi \neq 0$ almost everywhere

Conclusion: μ and \mathcal{F} uniquely determine each other

Is \mathbb{C}-linearity important?

Is \mathbb{C}-linearity important? NO!

Is \mathbb{C}-linearity important? NO!

Given $\mu, \nu \in L^{\infty}$ with $|\mu|+|\nu| \leq k$,

$$
\exists!\phi_{a}: \mathbb{C} \rightarrow \mathbb{C} \text { such that }\left\{\begin{array}{l}
\phi_{a} \text { is } K Q C \\
\partial_{\bar{z}} \phi_{a}=\mu \partial_{z} \phi_{a}+\nu \overline{\partial_{z} \phi_{a}} \\
\phi_{a}(0)=0, \phi_{a}(1)=a
\end{array}\right.
$$

whence

Remark: In particular,

Is \mathbb{C}-linearity important? NO!

Given $\mu, \nu \in L^{\infty}$ with $|\mu|+|\nu| \leq k$,

$$
\exists!\phi_{a}: \mathbb{C} \rightarrow \mathbb{C} \text { such that }\left\{\begin{array}{l}
\phi_{a} \text { is } K Q C \\
\partial_{\bar{z}} \phi_{a}=\mu \partial_{z} \phi_{a}+\nu \overline{\partial_{z} \phi_{a}} \\
\phi_{a}(0)=0, \phi_{a}(1)=a
\end{array}\right.
$$

So now

$$
\mathcal{F}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}} \text { is only } \mathbb{R} \text {-linear }
$$

whence

$$
\mathcal{F}=\left\{\alpha \phi_{1}+\beta \phi_{i}\right\}_{\alpha, \beta \in \mathbb{R}}
$$

Remark: In particular,

Is \mathbb{C}-linearity important? NO!

Given $\mu, \nu \in L^{\infty}$ with $|\mu|+|\nu| \leq k$,

$$
\exists!\phi_{a}: \mathbb{C} \rightarrow \mathbb{C} \text { such that }\left\{\begin{array}{l}
\phi_{a} \text { is } K Q C \\
\partial_{\bar{z}} \phi_{a}=\mu \partial_{z} \phi_{a}+\nu \overline{\partial_{z} \phi_{a}} \\
\phi_{a}(0)=0, \phi_{a}(1)=a
\end{array}\right.
$$

So now

$$
\mathcal{F}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}} \text { is only } \mathbb{R} \text {-linear }
$$

whence

$$
\mathcal{F}=\left\{\alpha \phi_{1}+\beta \phi_{i}\right\}_{\alpha, \beta \in \mathbb{R}}
$$

Remark: In particular,

$$
\phi_{\alpha+i \beta}=\alpha \phi_{1}+\beta \phi_{i}
$$

Conversely?

Fundamental step: (Alessandrini, Nesi; Astala, Jääskeläinen) Indeed, under \mathbb{C}-linearity one has $\phi_{i}=i \phi_{1}$ and therefore $\operatorname{lm}^{\prime}\left(\partial_{z} \phi_{1} \overline{\partial_{z} \phi_{i}}\right)=-\left.i \partial_{z} \phi_{1}\right|^{\prime \prime}$

Conversely?

$$
\begin{aligned}
\mathcal{F}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}} \text { as before } & \rightsquigarrow \quad \phi_{1}, \phi_{i} \\
& \rightsquigarrow \quad \mu, \nu
\end{aligned}
$$

Fundamental step: (Alessandrini, Nesi; Astala, Jääskeläinen)
If ϕ_{1}, ϕ_{i} are $K Q C$ and \mathbb{R}-linearly independent, then

$$
\operatorname{Im}\left(\partial_{z} \phi_{1} \overline{\partial_{z} \phi_{i}}\right) \neq 0 \quad \text { almost everywhere. }
$$

Indeed, under \mathbb{C}-linearity one has $\phi_{i}=i \phi_{1}$ and therefore

Conclusion: the pair μ, ν and \mathcal{F} uniquely determine each other

Conversely?

$$
\begin{aligned}
\mathcal{F}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}} \text { as before } & \rightsquigarrow \quad \phi_{1}, \phi_{i} \\
& \rightsquigarrow \quad \mu, \nu
\end{aligned}
$$

Fundamental step: (Alessandrini, Nesi; Astala, Jääskeläinen)
If ϕ_{1}, ϕ_{i} are $K Q C$ and \mathbb{R}-linearly independent, then

$$
\operatorname{Im}\left(\partial_{z} \phi_{1} \overline{\partial_{z} \phi_{i}}\right) \neq 0 \quad \text { almost everywhere. }
$$

Indeed, under \mathbb{C}-linearity one has $\phi_{i}=i \phi_{1}$ and therefore

$$
\operatorname{Im}\left(\partial_{z} \phi_{1} \overline{\partial_{z} \phi_{i}}\right)=-\left|\partial_{z} \phi_{1}\right|^{2}
$$

Conclusion: the pair μ, ν and \mathcal{F} uniquely determine each other

Conversely?

$$
\begin{aligned}
\mathcal{F}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}} \text { as before } & \rightsquigarrow \phi_{1}, \phi_{i} \\
& \rightsquigarrow \mu, \nu
\end{aligned}
$$

Fundamental step: (Alessandrini, Nesi; Astala, Jääskeläinen)
If ϕ_{1}, ϕ_{i} are $K Q C$ and \mathbb{R}-linearly independent, then

$$
\operatorname{Im}\left(\partial_{z} \phi_{1} \overline{\partial_{z} \phi_{i}}\right) \neq 0 \quad \text { almost everywhere. }
$$

Indeed, under \mathbb{C}-linearity one has $\phi_{i}=i \phi_{1}$ and therefore

$$
\operatorname{Im}\left(\partial_{z} \phi_{1} \overline{\partial_{z} \phi_{i}}\right)=-\left|\partial_{z} \phi_{1}\right|^{2}
$$

Conclusion: the pair μ, ν and \mathcal{F} uniquely determine each other

OUR GOAL: nonlinear counterpart

$\{$ Nonlinear Beltrami equations $\} \rightleftarrows\{$ nonlinear families $\}$

Nonlinear Beltrami equation (Bojarski, Iwaniec)

$$
\partial_{\bar{z}} f=\mathcal{H}\left(z, \partial_{z} f\right)
$$

where $\mathcal{H}: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ is such that:
(1) $\mathcal{H}(z, 0)=0$
(2) $z \mapsto \mathcal{H}(z, w)$ is measurable
(3) $w \mapsto \mathcal{H}(z, w)$ is $k(z)$-Lipschitz, $\|k\|_{\infty}=\frac{K-1}{K+1}<1$

Nonlinear Beltrami equation (Bojarski, Iwaniec)

$$
\partial_{\bar{z}} f=\mathcal{H}\left(z, \partial_{z} f\right)
$$

where $\mathcal{H}: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ is such that:
(1) $\mathcal{H}(z, 0)=0$
(2) $z \mapsto \mathcal{H}(z, w)$ is measurable
(3) $w \mapsto \mathcal{H}(z, w)$ is $k(z)$-Lipschitz, $\|k\|_{\infty}=\frac{K-1}{K+1}<1$

Given one such \mathcal{H}, look for a family $\mathcal{F}_{\mathcal{H}}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}}$

Nonlinear Beltrami equation (Bojarski, Iwaniec)

$$
\partial_{\bar{z}} f=\mathcal{H}\left(z, \partial_{z} f\right)
$$

where $\mathcal{H}: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ is such that:
(1) $\mathcal{H}(z, 0)=0$
(2) $z \mapsto \mathcal{H}(z, w)$ is measurable
(3) $w \mapsto \mathcal{H}(z, w)$ is $k(z)$-Lipschitz, $\|k\|_{\infty}=\frac{K-1}{K+1}<1$

Given one such \mathcal{H}, look for a family $\mathcal{F}_{\mathcal{H}}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}}$

$$
P_{a}:\left\{\begin{array}{l}
\phi_{a}: \mathbb{C} \rightarrow \mathbb{C} \text { is } K Q C \\
\partial_{\bar{z}} \phi_{a}=\mathcal{H}\left(z, \partial_{z} \phi_{a}\right) \\
\phi_{a}(0)=0, \phi_{a}(1)=a
\end{array}\right.
$$

General Existence Theorem (Astala, Iwaniec, Martin) If \mathcal{H} is as before and $a \neq 0$, then P_{a} has always a solution ϕ_{a}.

General Existence Theorem (Astala, Iwaniec, Martin) If \mathcal{H} is as before and $a \neq 0$, then P_{a} has always a solution ϕ_{a}.

Uniqueness theorem (ACFJS)

If \mathcal{H} is as before and

$$
\limsup _{|z| \rightarrow \infty} k(z)<3-2 \sqrt{2}
$$

then the solution to $P_{a}, a \neq 0$, is unique.

General Existence Theorem (Astala, Iwaniec, Martin) If \mathcal{H} is as before and $a \neq 0$, then P_{a} has always a solution ϕ_{a}.

Uniqueness theorem (ACFJS)

If \mathcal{H} is as before and

$$
\limsup _{|z| \rightarrow \infty} k(z)<3-2 \sqrt{2}
$$

then the solution to $P_{a}, a \neq 0$, is unique.
Moreover, the quantity $3-2 \sqrt{2}$ is sharp.

Fact: TFAE:

- \mathcal{H} has the uniqueness property
- f, g are $K Q C$ solutions of $\mathcal{H} \Rightarrow f-g$ bijective or constant

Fact: TFAE:

- \mathcal{H} has the uniqueness property
- f, g are $K Q C$ solutions of $\mathcal{H} \Rightarrow f-g$ bijective or constant

Corollary

If \mathcal{H} has uniqueness then $\mathcal{F}_{\mathcal{H}}$ has $K Q C$ increments.

Fact: TFAE:

- \mathcal{H} has the uniqueness property
- f, g are $K Q C$ solutions of $\mathcal{H} \Rightarrow f-g$ bijective or constant

Corollary

If \mathcal{H} has uniqueness then $\mathcal{F}_{\mathcal{H}}$ has $K Q C$ increments.

Proof:

$$
\begin{aligned}
\left|\partial_{\bar{z}}\left(\phi_{a}-\phi_{b}\right)\right|=\left|\mathcal{H}\left(z, \partial_{z} \phi_{a}\right)-\mathcal{H}\left(z, \partial_{z} \phi_{b}\right)\right| & \leq k(z)\left|\partial_{z}\left(\phi_{a}-\phi_{b}\right)\right| \\
& \Rightarrow \phi_{a}-\phi_{b} \text { is } K Q R \\
& \Rightarrow \phi_{a}-\phi_{b} \text { is } K Q C
\end{aligned}
$$

We say that $\mathcal{F}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}}$ is a K-quasiconformal flow if
(1) $\phi_{0} \equiv 0$
(2) for $a \neq 0, \phi_{a}: \mathbb{C} \rightarrow \mathbb{C}$ is $K Q C, 0 \mapsto 0,1 \mapsto a$
(3) if $a \neq b$ then $\phi_{a}-\phi_{b}$ is $K Q C$

We say that $\mathcal{F}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}}$ is a K-quasiconformal flow if
(1) $\phi_{0} \equiv 0$
(2) for $a \neq 0, \phi_{a}: \mathbb{C} \rightarrow \mathbb{C}$ is $K Q C, 0 \mapsto 0,1 \mapsto a$
(3) if $a \neq b$ then $\phi_{a}-\phi_{b}$ is $K Q C$

Conclusion : To every \mathcal{H} with uniqueness we can associate a $K Q C$ flow $\mathcal{F}_{\mathcal{H}}$.

We say that $\mathcal{F}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}}$ is a K-quasiconformal flow if
(1) $\phi_{0} \equiv 0$
(2) for $a \neq 0, \phi_{a}: \mathbb{C} \rightarrow \mathbb{C}$ is $K Q C, 0 \mapsto 0,1 \mapsto a$
(3) if $a \neq b$ then $\phi_{a}-\phi_{b}$ is $K Q C$

Conclusion: To every \mathcal{H} with uniqueness we can associate a $K Q C$ flow $\mathcal{F}_{\mathcal{H}}$. If $w \mapsto \mathcal{H}(z, w)$ is linear then the flow \mathcal{F} is linear too.

We say that $\mathcal{F}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}}$ is a K-quasiconformal flow if
(1) $\phi_{0} \equiv 0$
(2) for $a \neq 0, \phi_{a}: \mathbb{C} \rightarrow \mathbb{C}$ is $K Q C, 0 \mapsto 0,1 \mapsto a$
(3) if $a \neq b$ then $\phi_{a}-\phi_{b}$ is $K Q C$

Conclusion: To every \mathcal{H} with uniqueness we can associate a $K Q C$ flow $\mathcal{F}_{\mathcal{H}}$. If $w \mapsto \mathcal{H}(z, w)$ is linear then the flow \mathcal{F} is linear too.
Conversely?

Problem:
Given $\mathcal{F}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}}$, find a unique $\mathcal{H}=\mathcal{H}_{\mathcal{F}}$ such that

$$
\partial_{\bar{z}} \phi_{a}=\mathcal{H}\left(z, \partial_{z} \phi_{a}\right) \quad \text { for a.e. } z \text { and every } a
$$

Problem:

Given $\mathcal{F}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}}$, find a unique $\mathcal{H}=\mathcal{H}_{\mathcal{F}}$ such that

$$
\partial_{\bar{z}} \phi_{a}=\mathcal{H}\left(z, \partial_{z} \phi_{a}\right) \quad \text { for a.e. } z \text { and every } a
$$

Roughly:

Given $(z, w) \in \mathbb{C} \times \mathbb{C}$,

1. Find $a=a(z, w)$ such that

$$
\partial_{z} \phi_{a}(z)=w
$$

Problem:

Given $\mathcal{F}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}}$, find a unique $\mathcal{H}=\mathcal{H}_{\mathcal{F}}$ such that

$$
\partial_{\bar{z}} \phi_{a}=\mathcal{H}\left(z, \partial_{z} \phi_{a}\right) \quad \text { for a.e. } z \text { and every } a
$$

Roughly:

Given $(z, w) \in \mathbb{C} \times \mathbb{C}$,

1. Find $a=a(z, w)$ such that

$$
\partial_{z} \phi_{a}(z)=w
$$

2. Set

$$
\mathcal{H}(z, w)=\partial_{\bar{z}} \phi_{a}(z)
$$

Problem:

Given $\mathcal{F}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}}$, find a unique $\mathcal{H}=\mathcal{H}_{\mathcal{F}}$ such that

$$
\partial_{\bar{z}} \phi_{a}=\mathcal{H}\left(z, \partial_{z} \phi_{a}\right) \quad \text { for a.e. } z \text { and every } a
$$

Roughly:

Given $(z, w) \in \mathbb{C} \times \mathbb{C}$,

1. Find $a=a(z, w)$ such that

$$
\partial_{z} \phi_{a}(z)=w
$$

2. Set

$$
\mathcal{H}(z, w)=\partial_{\bar{z}} \phi_{a}(z)
$$

Automatically $\partial_{\bar{z}} \phi_{a}(z)=\mathcal{H}\left(z, \partial_{z} \phi_{a}(z)\right)$ always.

Problem:

Given $\mathcal{F}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}}$, find a unique $\mathcal{H}=\mathcal{H}_{\mathcal{F}}$ such that

$$
\partial_{\bar{z}} \phi_{a}=\mathcal{H}\left(z, \partial_{z} \phi_{a}\right) \quad \text { for a.e. } z \text { and every } a
$$

Roughly:

Given $(z, w) \in \mathbb{C} \times \mathbb{C}$,

1. Find $a=a(z, w)$ such that

$$
\partial_{z} \phi_{a}(z)=w
$$

2. Set

$$
\mathcal{H}(z, w)=\partial_{\bar{z}} \phi_{a}(z)
$$

Automatically $\partial_{\bar{z}} \phi_{a}(z)=\mathcal{H}\left(z, \partial_{z} \phi_{a}(z)\right)$ always. However,
Existence of a ? Uniqueness of a ?
Measurability of \mathcal{H} ? Lipschitz continuity of \mathcal{H} ? Uniqueness of \mathcal{H} ?

Uniqueness of a : Assume that for (z, w) we have two solutions a_{1}, a_{2} of the equation

$$
\partial_{z} \phi_{a}(z)=w
$$

By quasiconformality of the increments,

$\Rightarrow \partial_{\bar{z}} \phi_{a_{1}}(z)=\partial_{\bar{z}} \phi_{a_{2}}(z)$
\qquad
Remark: exceptional sets

Uniqueness of a : Assume that for (z, w) we have two solutions a_{1}, a_{2} of the equation

$$
\partial_{z} \phi_{a}(z)=w
$$

Then

$$
\partial_{z}\left(\phi_{a_{1}}-\phi_{a_{2}}\right)(z)=\partial_{z} \phi_{a_{1}}(z)-\partial_{z} \phi_{a_{2}}(z)=0
$$

By quasiconformality of the increments,

$$
\begin{aligned}
& \Rightarrow \partial_{\bar{z}}\left(\phi_{a_{1}}-\phi_{a_{2}}\right)(z)=0 \\
& \Rightarrow \partial_{\bar{z}} \phi_{a_{1}}(z)=\partial_{\bar{z}} \phi_{a_{2}}(z) \\
& \Rightarrow \mathcal{H}(z, w) \text { well defined }
\end{aligned}
$$

Remark: exceptional sets

Existence of solutions: Given (z, w), can we expect the equation

$$
\partial_{z} \phi_{a}(z)=w
$$

to have at least one solution $a=a(z, w)$?

Existence of solutions: Given (z, w), can we expect the equation

$$
\partial_{z} \phi_{a}(z)=w
$$

to have at least one solution $a=a(z, w)$?

- \mathbb{C}-linear flows: $\phi_{a}=a \phi_{1}$

Existence of solutions: Given (z, w), can we expect the equation

$$
\partial_{z} \phi_{a}(z)=w
$$

to have at least one solution $a=a(z, w)$?

- \mathbb{C}-linear flows: $\phi_{a}=a \phi_{1}$ Thus

$$
\begin{gathered}
\Rightarrow \text { need to solve a } \partial_{z} \phi_{1}(z)=w \\
\Rightarrow \text { it suffices } \partial_{z} \phi_{1}(z) \neq 0
\end{gathered}
$$

Existence of solutions: Given (z, w), can we expect the equation

$$
\partial_{z} \phi_{a}(z)=w
$$

to have at least one solution $a=a(z, w)$?

- \mathbb{C}-linear flows: $\phi_{a}=a \phi_{1}$ Thus

$$
\begin{gathered}
\Rightarrow \text { need to solve a } \partial_{z} \phi_{1}(z)=w \\
\Rightarrow \text { it suffices } \partial_{z} \phi_{1}(z) \neq 0
\end{gathered}
$$

- \mathbb{R}-linear flows: $\phi_{\alpha+i \beta}=\alpha \phi_{1}+\beta \phi_{i}$ and therefore
\Rightarrow need to solve $\alpha \partial_{z} \phi_{1}(z)+\beta \partial_{z} \phi_{i}(z)=w$
\Rightarrow it suffices $\operatorname{Im}\left(\partial_{z} \phi_{1}(z) \overline{\partial_{z} \phi_{i}(z)}\right) \neq 0$.

Existence of solutions: Given (z, w), can we expect the equation

$$
\partial_{z} \phi_{a}(z)=w
$$

to have at least one solution $a=a(z, w)$?

- \mathbb{C}-linear flows: $\phi_{a}=a \phi_{1}$ Thus

$$
\begin{gathered}
\Rightarrow \text { need to solve a } \partial_{z} \phi_{1}(z)=w \\
\Rightarrow \text { it suffices } \partial_{z} \phi_{1}(z) \neq 0
\end{gathered}
$$

- \mathbb{R}-linear flows: $\phi_{\alpha+i \beta}=\alpha \phi_{1}+\beta \phi_{i}$ and therefore

$$
\begin{gathered}
\Rightarrow \text { need to solve } \alpha \partial_{z} \phi_{1}(z)+\beta \partial_{z} \phi_{i}(z)=w \\
\quad \Rightarrow \text { it suffices } \operatorname{lm}\left(\partial_{z} \phi_{1}(z) \overline{\partial_{z} \phi_{i}(z)}\right) \neq 0
\end{gathered}
$$

- General $\mathcal{F}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}}$: Full range condition

$$
\left\{\partial_{z} \phi_{a}(z)\right\}_{a \in \mathbb{C}}=\mathbb{C} \quad \text { a.e. } z \in \mathbb{C} .
$$

Otherwise $\mathcal{H}_{\mathcal{F}}$ may be non unique for our given \mathcal{F}

Key Lemma. If $\mathcal{F}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}}$ smooth and non-degenerate then

$$
a \mapsto \partial_{z} \phi_{a}(z)
$$

is, for each fixed $z \in \mathbb{C}$, a global homeomorphism on \mathbb{C}_{∞}.
\square
Sketch of proof:

- Non degeneracy (I): for every fixed z,
- Non degeneracy (II): for every fixed z,

Key Lemma. If $\mathcal{F}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}}$ smooth and non-degenerate then

$$
a \mapsto \partial_{z} \phi_{a}(z)
$$

is, for each fixed $z \in \mathbb{C}$, a global homeomorphism on \mathbb{C}_{∞}.
Sketch of proof:

- Smoothness: $\left\{\begin{array}{l}z \mapsto \partial_{z} \phi_{a}(z) \text { cont, no exceptional set } \\ a \mapsto \partial_{z} \phi_{a}(z) \text { continuous on } \mathbb{C}\end{array}\right.$
- Non degeneracy (I): for every fixed z,

$$
\lim _{|a| \rightarrow \infty}\left|\partial_{z} \phi_{a}(z)\right|=\infty
$$

- Non degeneracy (II): for every fixed z,

$$
a \mapsto \partial_{z} \phi_{a}(z) \text { locally injective on } \mathbb{C}
$$

Key Lemma. If $\mathcal{F}=\left\{\phi_{a}\right\}_{a \in \mathbb{C}}$ smooth and non-degenerate then

$$
a \mapsto \partial_{z} \phi_{a}(z)
$$

is, for each fixed $z \in \mathbb{C}$, a global homeomorphism on \mathbb{C}_{∞}.
Sketch of proof:

- Smoothness: $\left\{\begin{array}{l}z \mapsto \partial_{z} \phi_{a}(z) \text { cont, no exceptional set } \\ a \mapsto \partial_{z} \phi_{a}(z) \text { continuous on } \mathbb{C}\end{array}\right.$
- Non degeneracy (I): for every fixed z,

$$
\lim _{|a| \rightarrow \infty}\left|\partial_{z} \phi_{a}(z)\right|=\infty
$$

- Non degeneracy (II): for every fixed z,

$$
a \mapsto \partial_{z} \phi_{a}(z) \text { locally injective on } \mathbb{C}
$$

Topology: Given $f: \mathbb{C}_{\infty} \rightarrow \mathbb{C}_{\infty}$, continuous on \mathbb{C}_{∞} and locally injective on $\mathbb{C}_{\infty} \backslash\{p\}$, then f is a global homeomorphism.

Is the key lemma realistic？
Second key lemma．If \mathcal{H} is smooth and has the uniqueness
property then $\mathcal{F}_{\mathcal{H}}$ is smooth and non degenerate．
＇deas of proof

```
* H}\in\mp@subsup{C}{}{\alpha}(z) implie
    z\mapsto क力a}(z)\mp@subsup{C}{loc}{1,\gamma
    a\mapsto 朤的(z) continous
```



```
* \mathcal{H}\in\mp@subsup{C}{}{\alpha}(z)\cap\mp@subsup{C}{}{1,\beta}(w) implies
1. z\mapsto Da 餗 (z) C Cloc
2. a\mapsto Da就 metrically continuous
```



```
4. a\mapstoD Dz 就 metrically C}\mp@subsup{}{}{1
5. }\operatorname{det}(\mp@subsup{D}{a}{\prime}(\mp@subsup{\partial}{z}{}\mp@subsup{\phi}{a}{}))\not=0=>\mathrm{ Non Degeneracy (II)
```

Is the key lemma realistic?
Second key lemma. If \mathcal{H} is smooth and has the uniqueness property then $\mathcal{F}_{\mathcal{H}}$ is smooth and non degenerate.

Is the key lemma realistic?
Second key lemma. If \mathcal{H} is smooth and has the uniqueness property then $\mathcal{F}_{\mathcal{H}}$ is smooth and non degenerate.

Ideas of proof

- $\mathcal{H} \in C^{\alpha}(z)$ implies

1. $z \mapsto \phi_{a}(z) C_{\text {loc }}^{1, \gamma}$
2. $a \mapsto \partial_{z} \phi_{a}(z)$ continous
3. $\left|\partial_{z} \phi_{a}(z)\right| \geq C(|z|)|a| \Rightarrow$ Non Degeneracy (I)

- $\mathcal{H} \in C^{\alpha}(z) \cap C^{1, \beta}(w)$ implies

1. $z \mapsto D_{a} \phi_{a}(z) C_{\text {loc }}^{1, \beta \gamma}$
2. $a \mapsto D_{a} \phi_{a}$ metrically continuous
3. $D_{z}\left(D_{a} \phi_{a}\right)=D_{a}\left(D_{z} \phi_{a}\right)$ everywhere
4. $a \mapsto D_{z} \phi_{a}$ metrically C^{1}
5. $\operatorname{det}\left(D_{a}\left(\partial_{z} \phi_{a}\right)\right) \neq 0 \Rightarrow$ Non Degeneracy (II)

Summarizing,

$$
\begin{aligned}
\mathcal{H} \text { u.p. } & \rightsquigarrow \mathcal{F}_{\mathcal{H}} \\
\mathcal{H} \text { u.p., smooth } & \rightsquigarrow \mathcal{F}_{\mathcal{H}} \text { smooth, non degenerate. }
\end{aligned}
$$

Theorem. If \mathcal{F} is smooth and non degenerate then there is a unique $\mathcal{H}=\mathcal{H}_{\mathcal{F}}$ such that every member of \mathcal{F} solves $\mathcal{H}_{\mathcal{F}}$ Coroltary. 'f \neq is smooth and has u.p. then there is an involution

Summarizing,

$$
\begin{aligned}
\mathcal{H} \text { u.p. } & \rightsquigarrow \mathcal{F}_{\mathcal{H}} \\
\mathcal{H} \text { u.p., smooth } & \rightsquigarrow \mathcal{F}_{\mathcal{H}} \text { smooth, non degenerate. }
\end{aligned}
$$

Theorem. If \mathcal{F} is smooth and non degenerate then there is a unique $\mathcal{H}=\mathcal{H}_{\mathcal{F}}$ such that every member of \mathcal{F} solves $\mathcal{H}_{\mathcal{F}}$.

Open problems

- does $\ddot{\mathcal{H}}_{\mathcal{F}}$ has uniqueness?
- if so: is it true that $\mathcal{F}_{\mathcal{H}_{\mathcal{F}}}=\mathcal{F}$?
- without smoothness ?

Summarizing,

$$
\begin{aligned}
\mathcal{H} \text { u.p. } & \rightsquigarrow \mathcal{F}_{\mathcal{H}} \\
\mathcal{H} \text { u.p., smooth } & \rightsquigarrow \mathcal{F}_{\mathcal{H}} \text { smooth, non degenerate. }
\end{aligned}
$$

Theorem. If \mathcal{F} is smooth and non degenerate then there is a unique $\mathcal{H}=\mathcal{H}_{\mathcal{F}}$ such that every member of \mathcal{F} solves $\mathcal{H}_{\mathcal{F}}$.

Corollary. If \mathcal{H} is smooth and has u.p. then there is an involution

$$
\mathcal{H} \rightsquigarrow \mathcal{F}_{\mathcal{H}} \rightsquigarrow \mathcal{H}_{\mathcal{F}_{\mathcal{H}}}=\mathcal{H}
$$

Open problems

- does $\mathcal{H}_{\mathcal{F}}$ has uniqueness?
- if so: is it true that $\mathcal{F}_{\mathcal{H}_{-}}=$I ?
- without smoothness

Summarizing,

$$
\begin{aligned}
\mathcal{H} \text { u.p. } & \rightsquigarrow \mathcal{F}_{\mathcal{H}} \\
\mathcal{H} \text { u.p., smooth } & \rightsquigarrow \mathcal{F}_{\mathcal{H}} \text { smooth, non degenerate. }
\end{aligned}
$$

Theorem. If \mathcal{F} is smooth and non degenerate then there is a unique $\mathcal{H}=\mathcal{H}_{\mathcal{F}}$ such that every member of \mathcal{F} solves $\mathcal{H}_{\mathcal{F}}$.

Corollary. If \mathcal{H} is smooth and has u.p. then there is an involution

$$
\mathcal{H} \rightsquigarrow \mathcal{F}_{\mathcal{H}} \rightsquigarrow \mathcal{H}_{\mathcal{F}_{\mathcal{H}}}=\mathcal{H} .
$$

Open problems

- does $\mathcal{H}_{\mathcal{F}}$ has uniqueness?
- if so: is it true that $\mathcal{F}_{\mathcal{H}_{\mathcal{F}}}=\mathcal{F}$?
- without smoothness ?

Many thanks!

