
Nonlinear Beltrami equations
and quasiconformal flows

Albert Clop

Departament de Matemàtiques
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We say that f : Ω ⊂ C→ C is K -quasiregular if

∗ f ∈W 1,2
loc (Ω;C), and

∗ f satisfies the distortion inequality with constant K ,

|Df (z)|2 ≤ K J(z , f ) a.e.

Equivalently,

|∂z f (z)| ≤ k |∂z f (z)| a.e., with k =
K − 1

K + 1
,

or even

∂z f (z) = µ(z) ∂z f (z) a.e., for some µ : |µ(z)| ≤ k .

We say that f is K -quasiconformal if it is a KQR homeo.

K = 1⇔ k = 0⇔ µ ≡ 0 ⇒

{
KQR = {holomorphic}
KQC = {conformal}
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Measurable Riemann Mapping Theorem.
Given a 6= 0, µ ∈ L∞(C) with ‖µ‖∞ ≤ k < 1,

∃ !φa : C→ C such that


φa is KQC

∂zφa = µ∂zφa ← Beltrami equation

φa(0) = 0, φa(1) = a

Indeed,
φa = aφ1

Therefore µ generates a set F = {φa}a∈C such that

(1) φ0 ≡ 0

(2) if a 6= 0 then φa ∈ KQC , 0 7→ 0, 1 7→ a

(3) F is stable under C-linear combinations
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Fact: This also works conversely:

F = {φa}a∈C as before  φ1

 µ = µ(z) =
∂zφ1(z)

∂zφ1(z)
.

Main reason: φ KQC ⇒ ∂zφ 6= 0 almost everywhere

Conclusion: µ and F uniquely determine each other
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Is C-linearity important? NO!

Given µ, ν ∈ L∞ with |µ|+ |ν| ≤ k ,

∃ !φa : C→ C such that


φa is KQC

∂zφa = µ∂zφa + ν ∂zφa

φa(0) = 0, φa(1) = a

So now
F = {φa}a∈C is only R-linear

whence
F = {αφ1 + β φi}α,β∈R

Remark: In particular,

φα+iβ = αφ1 + βφi
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Conversely?

F = {φa}a∈C as before  φ1, φi

 µ, ν

Fundamental step: (Alessandrini, Nesi; Astala, Jääskeläinen)
If φ1, φi are KQC and R-linearly independent, then

Im(∂zφ1 ∂zφi ) 6= 0 almost everywhere.

Indeed, under C-linearity one has φi = i φ1 and therefore

Im(∂zφ1 ∂zφi ) = −|∂zφ1|2

Conclusion: the pair µ, ν and F uniquely determine each other
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OUR GOAL: nonlinear counterpart

{Nonlinear Beltrami equations}� {nonlinear families}



Nonlinear Beltrami equation (Bojarski, Iwaniec)

∂z f = H(z , ∂z f )

where H : C× C→ C is such that:

(1) H(z , 0) = 0

(2) z 7→ H(z ,w) is measurable

(3) w 7→ H(z ,w) is k(z)-Lipschitz, ‖k‖∞ = K−1
K+1 < 1

Given one such H, look for a family FH = {φa}a∈C

Pa :


φa : C→ C is KQC

∂zφa = H(z , ∂zφa)

φa(0) = 0, φa(1) = a
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General Existence Theorem (Astala, Iwaniec, Martin)
If H is as before and a 6= 0, then Pa has always a solution φa.

Uniqueness theorem (ACFJS)
If H is as before and

lim sup
|z|→∞

k(z) < 3− 2
√

2

then the solution to Pa , a 6= 0, is unique.
Moreover, the quantity 3− 2

√
2 is sharp.
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Fact: TFAE:

I H has the uniqueness property

I f , g are KQC solutions of H ⇒ f − g bijective or constant

Corollary
If H has uniqueness then FH has KQC increments.

Proof:

|∂z(φa − φb)| = |H(z , ∂zφa)−H(z , ∂zφb)| ≤k(z) |∂z(φa − φb)|
⇒φa − φb is KQR

⇒φa − φb is KQC
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We say that F = {φa}a∈C is a K -quasiconformal flow if

(1) φ0 ≡ 0

(2) for a 6= 0, φa : C→ C is KQC , 0 7→ 0, 1 7→ a

(3) if a 6= b then φa − φb is KQC

Conclusion : To every H with uniqueness we can associate a KQC
flow FH. If w 7→ H(z ,w) is linear then the flow F is linear too.
Conversely?
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Problem:
Given F = {φa}a∈C, find a unique H = HF such that

∂zφa = H(z , ∂zφa) for a.e. z and every a

Roughly:
Given (z ,w) ∈ C× C,

1. Find a = a(z ,w) such that

∂zφa(z) = w

2. Set
H(z ,w) = ∂zφa(z).

Automatically ∂zφa(z) = H(z , ∂zφa(z)) always. However,

Existence of a? Uniqueness of a ?
Measurability of H? Lipschitz continuity of H? Uniqueness of H?
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Uniqueness of a: Assume that for (z ,w) we have two solutions
a1, a2 of the equation

∂zφa(z) = w

Then
∂z(φa1 − φa2)(z) = ∂zφa1(z)− ∂zφa2(z) = 0

By quasiconformality of the increments,

⇒ ∂z(φa1 − φa2)(z) = 0

⇒ ∂zφa1(z) = ∂zφa2(z)

⇒ H(z ,w) well defined

Remark: exceptional sets
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Existence of solutions: Given (z ,w), can we expect the equation

∂zφa(z) = w

to have at least one solution a = a(z ,w)?

I C-linear flows: φa = aφ1 Thus

⇒ need to solve a ∂zφ1(z) = w

⇒ it suffices ∂zφ1(z) 6= 0.

I R-linear flows: φα+iβ = αφ1 + β φi and therefore

⇒ need to solve α∂zφ1(z) + β ∂zφi (z) = w

⇒ it suffices Im(∂zφ1(z) ∂zφi (z)) 6= 0.

I General F = {φa}a∈C: Full range condition

{∂zφa(z)}a∈C = C a.e. z ∈ C.

Otherwise HF may be non unique for our given F
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Key Lemma. If F = {φa}a∈C smooth and non-degenerate then

a 7→ ∂zφa(z)

is, for each fixed z ∈ C, a global homeomorphism on C∞.
Sketch of proof:

I Smoothness:

{
z 7→ ∂zφa(z)cont, no exceptional set

a 7→ ∂zφa(z) continuous on C
I Non degeneracy (I ): for every fixed z ,

lim
|a|→∞

|∂zφa(z)| =∞

I Non degeneracy (II ): for every fixed z ,

a 7→ ∂zφa(z) locally injective on C

Topology: Given f : C∞ → C∞, continuous on C∞ and locally
injective on C∞ \ {p}, then f is a global homeomorphism.
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is, for each fixed z ∈ C, a global homeomorphism on C∞.
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Is the key lemma realistic?

Second key lemma. If H is smooth and has the uniqueness
property then FH is smooth and non degenerate.

Ideas of proof

I H ∈ Cα(z) implies

1. z 7→ φa(z) C 1,γ
loc

2. a 7→ ∂zφa(z) continous
3. |∂zφa(z)| ≥ C (|z |) |a| ⇒ Non Degeneracy (I )

I H ∈ Cα(z) ∩ C 1,β(w) implies

1. z 7→ Daφa(z) C 1,βγ
loc

2. a 7→ Daφa metrically continuous
3. Dz(Daφa) = Da(Dzφa) everywhere
4. a 7→ Dzφa metrically C 1

5. det(Da(∂zφa)) 6= 0 ⇒ Non Degeneracy (II )
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Summarizing,

H u.p.  FH
H u.p., smooth  FH smooth, non degenerate.

Theorem. If F is smooth and non degenerate then there is a
unique H = HF such that every member of F solves HF .

Corollary. If H is smooth and has u.p. then there is an involution

H  FH  HFH = H.

Open problems

I does HF has uniqueness?

I if so: is it true that FHF = F?

I without smoothness ?
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Many thanks!


